Sample Math 115 Final Exam Spring 2016

- The final exam is on Thursday, May 12 at 4:30PM - 7:00PM.
- The final exam will be held in Budig 120. The room and seat assignments for the final exam are the same as those for the common midterm exam.
- Only simple graphing calculators (TI-84 plus and below) are allowed for the common exams. You will mark your answers on both exam booklets and provided bubble sheets. You are considered responsible to bring pens/pencils and a calculator to the common exams. Pens or pencils will not be provided for you, and interchanging calculators will be prohibited during the exams.
- The common final exam covers
- Chapter 2: Sections 2.1, 2.2, 2.3, 2.4, 2.5, 2.6;
- Chapter 3: Sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7;
- Chapter 4: Sections 4.1, 4.2, 4.3, 4.4, 4.5;
- Chapter 5: Sections 5.1, 5.2, 5.4, 5.5;
- Chapter 6: Sections 6.1, 6.2, 6.3, 6.4, 6.5
- The problems below, all multiple-choice with exactly one correct answer, are intended to be reasonably representative of what might appear on the actual exam, which will have $\mathbf{3 0}$ problems.

1. Let $f(x)=\frac{x}{x^{2}+1}$ and $g(x)=\frac{1}{x}$. Then, $(g \circ f)(x)$ is
(A) $\frac{x}{x^{2}+1}$
(B) $\frac{1}{x}$
(C) $x+\frac{1}{x}$
(D) x
(E) None of the above
2. Suppose that $F(x)=f(x)^{2}+1, \mathrm{f}(1)=1$, and $f^{\prime}(1)=3$. Find $F^{\prime}(1)$.
(A) 3
(B) 4
(C) 5
(D) 6
(E) None of the above
3. The unit price p and the quantity x demanded are related by the demand equation $50-p\left(x^{2}+1\right)=0$. Find the revenue function $R=R(x)$.
(A) $\frac{50 x}{x^{2}+1}$
(B) $\frac{50}{x^{2}+1}$
(C) $\frac{x}{x^{2}+1}$
(D) $\frac{x^{2}+1}{50}$
(E) None of the above
4. Find the marginal revenue for the revenue function found in Problem 3.
(A) $\frac{-100 x}{\left(x^{2}+1\right)^{2}}$
(B) $\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$
(C) $\frac{x}{25}$
(D) $\frac{50\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}$
(E) None of the above
5. Find $\frac{d y}{d x}$ in terms of x and y when x and y are related by the equation $x^{1 / 3}+y^{1 / 3}=1$.
(A) $-\left(\frac{x}{y}\right)^{2 / 3}$
(B) $-\left(\frac{y}{x}\right)^{2 / 3}$
(C) $-\left(\frac{x}{y}\right)^{1 / 3}$
(D) $-\left(\frac{y}{x}\right)^{1 / 3}$
(E) None of the above
6. The derivative of the function $f(x)=\frac{x-3}{\sqrt{x+1}}+\sqrt{3 x+4}+3$ is

$$
\begin{aligned}
& \text { (A) } \frac{(x-3) \frac{1}{2}(x+1)^{-1 / 2}-\sqrt{x+1}}{(\sqrt{x+1})^{2}}+\frac{1}{2}(3 x+4)^{-1 / 2}+3 \\
& \text { (B) } \frac{(x-3) \frac{1}{2}(x+1)^{-1 / 2}-\sqrt{x+1}}{(\sqrt{x+1})^{2}}+\frac{1}{2}(3 x+4)^{-1 / 2} \\
& \text { (C) } \frac{\sqrt{x+1}-(x-3) \frac{1}{2}(x+1)^{-1 / 2}}{(\sqrt{x+1})^{2}}+\frac{1}{2}(3 x+4)^{-1 / 2} \\
& \text { (D) } \frac{\sqrt{x+1}-(x-3) \frac{1}{2}(x+1)^{-1 / 2}}{(\sqrt{x+1})^{2}}+\frac{1}{2}(3 x+4)^{-1 / 2}+3
\end{aligned}
$$

(E) None of the above
7. Let $f(x)=\frac{\sqrt{x+1}}{x-2}$. The domain of f is
(A) $(-\infty, 2)$ and $(2,+\infty)$
(B) $(-\infty, 2]$ and $[2,+\infty)$
(C) $[-1,2)$ and $(2,+\infty)$
(D) $[-1,+\infty)$
(E) None of the above
8. Let $f(x)=\ln (2-x)$. The domain of f is
(A) $(-\infty,+\infty)$
(B) $(0,+\infty)$
(C) $(-\infty, 0)$
(D) $(-\infty, 2)$
(E) None of the above
9. Evaluate: $\lim _{x \rightarrow 3}\left(3 x^{2}-4\right)$.
(A) $23 \quad$ (B) $5 \quad$ (C) 4
(D) The limit does not exist (E) None of the above
10. Evaluate $\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{x-5}$.
(A) 3
(B) 8
(C) 0
(D) The limit does not exist
(E) None of the above
11. Evaluate $\lim _{x \rightarrow+\infty} \frac{x^{2}-1}{3 x^{2}-2}$.
(A) -1
(B) $\frac{1}{3}$
(C) +1
(D) The limit does not exist (E) None of the above
12. Evaluate $\lim _{x \rightarrow 1^{-}} f(x)$ for the function f defined as

$$
f(x)= \begin{cases}e^{x}, & \text { for } 0<x<1 \\ 3, & \text { for } x=1 \\ \ln x, & \text { for } x>1\end{cases}
$$

(A) $0 \quad$ (B) e
(C) $3 \quad$ (D) The limit does not exist
(E) None of the above
13. Find the horizontal asymptotes of function $f(x)=\frac{x^{2}}{1+4 x^{2}}$.
(A) $y=1$
(B) $y=\frac{1}{4}$
(C) $x=1$
(D) The function has no horizontal asymptotes
(E) None of the above
14. Find the vertical asymptotes of function $f(x)=\frac{2+x}{(1-x)^{2}}$.

$$
\begin{array}{lll}
\text { (A) } x=-2 & \text { (B) } x=1 & \text { (C) } y=0
\end{array}
$$

(D) The function has no vertical asymptotes (E) None of the above
15. The line tangent to $y=x^{2}-3 x$ through the point $(1,-2)$ has equation
(A) $y=x-3$
(B) $y+2=(2 x-3)(x-1)$
(C) $y=-x-1$
(D) $y-2=(2 x-3)(x-1)$
(E) None of the above
16. Find an equation of the tangent line to the graph of $y=x \ln x$ at the point $(1,0)$.
(A) $y=x+1$
(B) $y=x-1$
(C) $y=(x+1) \ln x$
(D) $y=(x-1) \ln x$
(E) None of the above
17. Find an equation of the tangent line to the graph of $y=\ln \left(x^{2}\right)$ at the point $(2, \ln 4)$.
(A) $y=x+2-\ln 4$
(B) $y=\frac{2}{x}(x-2)-\ln 4$
(C) $y=\frac{2}{x}(x-2)+\ln 4$
$\begin{array}{ll}\text { (D) } y=x-2+\ln 4 & \text { (E) None of the above }\end{array}$
18. Find an equation of the tangent line to the graph of $y=e^{2 x-3}$ at the point $\left(\frac{3}{2}, 1\right)$.
(A) $y=2 e^{2 x-3}$
(B) $y=2 x-4$
(C) $y=2 x-2$
(D) $y=2 e^{2 x-3}\left(x-\frac{3}{2}\right)$
(E) None of the above
19. Find an equation of the tangent line to the graph of $y=e^{-x^{2}}$ at the point $(1,1 / e)$.
(A) $y=-\frac{2}{e}(x+1)+\frac{1}{e}$
(B) $y=-\frac{2}{e}(x-1)-\frac{1}{e}$
(C) $y=-\frac{2}{e}(x-1)+\frac{1}{e}$
(D) $y=-2 x e^{-x^{2}}(x-1)+\frac{1}{e}$
(E) None of the above
20. Find $\frac{d y}{d x}$ in terms of x only when x and y are related by the equation $\ln y=2 x-3$.
(A) $e^{2 x-3}$
(B) $\frac{1}{2 x-3}$
(C) $2 e^{2 x-3}$
(D) $\frac{e^{2 x-3}}{2 x-3}$
(E) None of the above
21. Find the second derivative of the function $f(x)=e^{x}+\ln \left(x^{2}\right)+x \ln 3+10$.
(A) $e^{x}+\frac{1}{x^{2}}+\frac{1}{3}$
(B) $e^{x}+\frac{1}{x}+\ln 3$
(C) 0
(D) $e^{x}+\frac{2}{x}+\ln 3$
(E) None of the above
22. The absolute maximum value and the absolute minimum value of the function $f(x)=$ $\frac{1}{2} x^{2}-2 \sqrt{x}$ on $[0,3]$ are
(A) absolute min. value: $-\frac{3}{2}$; absolute max. value: $\frac{9}{2}-2 \sqrt{3}$
(B) absolute min. value: 0; absolute max. value: 3
(C) absolute min. value: 0; no absolute max. value
(D) no absolute min. value; absolute max. value: 3
(E) None of the above
23. Find the absolute maximum value and the absolute minimum value, if any, of the function $f(x)=\frac{1}{1+x^{2}}$.
(A) absolute min. value: 0; absolute max. value: 1
(B) absolute min. value: 0; no absolute max. value
(C) no absolute min. value; absolute max. value: 1
(D) no absolute min. value; no absolute max. value
(E) None of the above
24. Find the absolute extrema of function $f(t)=t e^{-t}$.
(A) absolute min. value: 0 ; absolute max. value: $\frac{1}{e}$
(B) absolute min. value: 0; no absolute max. value
(C) no absolute min. value; absolute max. value: $\frac{1}{e}$
(D) no absolute min. value; no absolute max. value (E) None of the above
25. Find the absolute extrema of the function $f(t)=\frac{\ln t}{t}$ on $[1,2]$.
(A) absolute min. value: 0; absolute max. value: $\frac{\ln 2}{2}$
(B) absolute min. value: 0; absolute max. value: $\frac{1}{e}$
(C) absolute min. value: 1; absolute max. value: 2
(D) absolute min. value: 0; absolute max. value: e
(E) None of the above
26. Let $f(x)=\frac{1}{3} x^{3}-x^{2}+x-6$. Determine the intervals where the function is increasing and where it is decreasing.
(A) increasing on $(-\infty, 1)$ and on $(1, \infty)$
(B) increasing on $(-\infty, 1)$ and decreasing on $(1, \infty)$
(C) decreasing on $(-\infty, 1)$ and increasing on $(1, \infty)$
(D) decreasing on $(-\infty, 1)$ and on $(1, \infty)$
(E) None of the above
27. Let the function f be defined in Problem 26. Find the intervals where f is concave upward and where it is concave downward.
(A) concave upward on $(-\infty, 1)$ and on $(1, \infty)$
(B) concave upward on $(-\infty, 1)$ and downward on $(1, \infty)$
(C) concave downward on $(-\infty, 1)$ and upward on $(1, \infty)$
(D) Concave downward on $(-\infty, 1)$ and on $(1, \infty)$
(E) None of the above
28. Let the function f be defined in Problem 26. Find the inflection points, if any.
(A) $(x, y)=(1, f(1))$
(B) $(x, y)=\left(\frac{1}{2}, f\left(\frac{1}{2}\right)\right)$
(C) $(x, y)=(0, f(0))$
(D) No inflection points (E) None of the above
29. Let $f(x)=e^{-x^{2}}$. Determine the intervals where the function is increasing and where it is decreasing.
(A) increasing on $(-\infty, 0)$ and on $(0, \infty)$
(B) increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$
(C) decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$
(D) decreasing on $(-\infty, 0)$ and on $(0, \infty)$
(E) None of the above
30. Let the function f be defined in Problem 29. Find the relative extrema of f.
(A) relative min. value: 0; relative max. value: 1
(B) no relative min. value ; relative max. value: 1
(C) relative min. value: 0; no relative max. value
(D) no relative min. value ; no relative max. value
(E) None of the above
31. Let the function f be defined in Problem 29. Find the intervals where f is concave upward and where it is concave downward.
(A) concave upward on $(-\infty, 0)$ and on $(0, \infty)$
(B) concave downward on $(-\infty, 0)$ and on $(0, \infty)$
(C) concave upward on $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$ and on $\left(\frac{1}{\sqrt{2}}, \infty\right)$; concave downward on $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(D) concave downward on $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$ and on $\left(\frac{1}{\sqrt{2}}, \infty\right)$; concave upward on $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(E) None of the above
32. Let the function f be defined in Problem 29. Find the inflection points, if any.
(A) $(x, y)=(0, f(0))$
(B) $(x, y)=\left(-\frac{1}{\sqrt{2}}, f\left(-\frac{1}{\sqrt{2}}\right)\right)$ and $(x, y)=\left(\frac{1}{\sqrt{2}}, f\left(\frac{1}{\sqrt{2}}\right)\right)$
(C) $(x, y)=\left(-\frac{1}{\sqrt{2}}, f\left(-\frac{1}{\sqrt{2}}\right)\right)$
(D) $(x, y)=\left(\frac{1}{\sqrt{2}}, f\left(\frac{1}{\sqrt{2}}\right)\right)$
(E) None of the above
33. Let $f(x)=x \ln x$. Determine the intervals where the function is increasing and where it is decreasing.
(A) increasing on $\left(-\infty, \frac{1}{e}\right)$ and decreasing on $\left(\frac{1}{e}, \infty\right)$
(B) decreasing on $\left(-\infty, \frac{1}{e}\right)$ and increasing on $\left(\frac{1}{e}, \infty\right)$
(C) increasing on ($0, \frac{1}{e}$) and decreasing on $\left(\frac{1}{e}, \infty\right)$
(D) decreasing on $\left(0, \frac{1}{e}\right)$ and increasing on $\left(\frac{1}{e}, \infty\right)$
(E) None of the above
34. Suppose that f is defined in Problem 33. Determine the intervals of concavity for the function.
(A) concave upward on $(0, \infty)$
(B) concave downward on $(0, \infty)$
(C) concave upward on $\left(0, \frac{1}{e}\right)$; concave downward on $\left(\frac{1}{e}, \infty\right)$
(D) concave downward on $\left(0, \frac{1}{e}\right)$; concave upward on $\left(\frac{1}{e}, \infty\right)$
(E) None of the above
35. Suppose that f is defined in Problem 33. Find the inflection points, if any.
(A) $(x, y)=\left(\frac{1}{e}, f\left(\frac{1}{e}\right)\right)$
(B) $(x, y)=(1, f(1))$
(C) $(x, y)=(e, f(e))$
(D) No inflection points (E) None of the above
36. Find the derivative of function $y=x^{\ln x}$. (Hint: use logarithmic differentiation.)
(A) $y^{\prime}=(\ln x)^{2}$
(B) $y^{\prime}=\frac{2 \ln x}{x} x^{\ln x}$
(C) $y^{\prime}=x^{\ln x}$
(D) the derivative does not exist (E) None of the above
37. Find the derivative of function $y=10^{x}$. (Hint: use logarithmic differentiation.)

$$
\begin{array}{lll}
\text { (A) } y^{\prime}=10^{x} \ln 10 & \text { (B) } y^{\prime}=10^{x} & \text { (C) } y^{\prime}=10^{x} \ln e
\end{array}
$$

(D) the derivative does not exist (E) None of the above
38. An open box is to be made from a square sheet of tin measuring 12 inches $\times 12$ inches by cutting out a square of side x inches from each corner of the sheet and folding up the four resulting flaps. To maximize the volume of the box, take $x=$
(A) 1
(B) 2
(C) 3
(D) $4 \quad$ (E) None of the above
39. A rectangular box is to have a square base and a volume of $20 \mathrm{ft}^{3}$. If the material for the base costs 30 cents/square, the material for the four sides costs 10 cents/square, and the material for the top costs 20 cents/square, determine the dimensions of the box that can be constructed at minimum cost. (See Fig. 1.)
(A) $x \times x \times h=1 \times 1 \times 20$
(B) $x \times x \times h=2 \times 2 \times 5$
(C) $x \times x \times h=2.5 \times 2.5 \times 3.2$
(D) $x \times x \times h=3 \times 3 \times 2.22 \quad$ (E) None of the above
40. Postal regulations specify that a parcel sent by parcel post may have a combined length and girth of no more than 108 inches. Find the dimensions of the cylindrical package of greatest volume that may be sent through the mail. (In the answers, r is the radius and l is the length.)

$$
\left.\begin{array}{cl}
\text { (A) } r \times l= & \frac{35}{\pi} \times 37
\end{array} \text { (B) } r \times l=\frac{36}{\pi} \times 36 \quad \text { (C) } r \times l=\frac{37}{\pi} \times 35\right) ~ \begin{array}{cll}
\text { (D) } r \times l=\frac{38}{\pi} \times 34 & \text { (E) None of the above }
\end{array}
$$

Figure 1: Problem 39.
41. It costs an artist $1000+5 x$ dollars to produce x signed prints of one of her drawings. The price at which x prints will sell is $400 / \sqrt{x}$ dollars per print. How many prints should she make in order to maximize her profit ?
(A) 1200
(B) 1400
(C) 1600
(D) 1800
(E) None of the above
42. The differential of function $f(x)=1000$ is
(A) 1000
(B) $1000 d x$
(C) 0
(D) $d x$
(E) None of the above
43. Use differentials to estimate the change in $\sqrt{x^{2}+5}$ when x increases from 2 to 2.123 .
(A) 0.083
(B) 0.082
(C) 0.081
(D) 0.080
(E) None of the above
44. The velocity of a car (in feet/second) t seconds after starting from rest is given by the function

$$
f(t)=2 \sqrt{t} \quad(0 \leq t \leq 30)
$$

Find the car's position at any time t.
(A) $\frac{4}{3} t^{3 / 2}+C$
(B) $\frac{4}{3} t^{3 / 2}$
(C) $\frac{4}{3} t^{1 / 2}+C$
(D) $\frac{4}{3} t^{1 / 2}$
(E) None of the above
45. Evaluate $\int\left(\sqrt{x}-2 e^{x}\right) d x$.
(A) $\frac{2}{3} x^{3 / 2}-2 e^{x}$
(B) $\frac{2}{3} x^{3 / 2}-2 e^{x}+C$
(C) $\frac{3}{2} x^{2 / 3}-2 e^{x}$
(D) $\frac{3}{2} x^{2 / 3}-2 e^{x}+C$
(E) None of the above
46. Evaluate $\int 2 x\left(x^{2}+3\right)^{10} d x$. (Hint: Use substitution)
(A) $\left(x^{2}+3\right)^{11}+C$
(B) $\frac{1}{11}\left(x^{2}+3\right)^{11}+C$
(C) $\left(x^{2}+3\right)^{10}+C$
(D) $\frac{1}{10}\left(x^{2}+3\right)^{10}+C$
(E) None of the above
47. Calculate $\int_{1}^{8}\left(4 x^{1 / 3}+\frac{8}{x^{2}}\right) d x$.
(A) 49
(B) 50
(C) 51
(D) 52
(E) None of the above
48. Find the area of the region under the graph of function $f(x)=x^{2}$ on the interval [0 , $1]$.
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{1}{5}$
(E) None of the above
49. Find the area of the region under the graph of $y=x^{2}+1$ from $x=-1$ to $x=2$.
(A) 4
(B) 5
(C) 6
(D) 7
(E) None of the above

