14.1
8. solution: Domain =
$$f(x, y)$$
: $bx 1 \le 9, y \le R, 3$
 -7 $f(x, y)$
 $(x, y) \Rightarrow (2.5)$ $f(x, y) + g(x, y)$
= $\lim_{(x, y) \to (2.5)} f(x, y) + \lim_{(x, y) \to (2.5)} f(x, y) + \lim_{(x, y) \to (2.5)} g(x, y)$
 $= \frac{3}{3+7} = \frac{3}{10}$
15. solution: $\lim_{(x, y) \to (0, 0)} f(x, y)$
if $y = mx$ then $\lim_{(x, y) \to (0, 0)} f(x, y)$
 $= \lim_{(x, y) \to (0, 0)} \frac{x^3 + (mx)^3}{x (mx)^2}$
 $= \lim_{(x, y) \to (0, 0)} \frac{x^3 + m^3 x^3}{m^2 x^3} = \frac{1 + m^3}{m^2}$
The limit depends on the value of m ,
therefore it doesn't exist.

18. Solution: Let
$$\begin{cases} x = Y(os\theta) & \text{then} \\ y = Y \sin\theta \end{cases}$$

 $\lim_{(x,y) \to (0,0)} f(x,y) = \lim_{(x,0) \to (0^{+}, ?)} \frac{(Y(0s\theta))^{3}}{(Y(0s\theta)^{2} + (Ys(0\theta))^{2}}$
 $= \lim_{(x,0) \to (0^{+}, ?)} Y(0s^{3}\theta)$
Observe that $(as\theta)$ is in $(-1,1)$ for all Yeal θ .
 $0 = \lim_{(x,0) \to (0^{+}, ?)} Y(0s^{3}\theta) \leq \lim_{(x,0) \to (0^{+}, ?)} Y = 0$
 $Y \to 0^{+} (Y,\theta) \to (0^{+}, ?) \qquad Y \to 0^{+}$
then the limit equals 0 by Squeeze theorem.
 $\lim_{(x,0) \to (0^{+}, ?)} (y) = \lim_{(Y,0) \to (0^{+}, ?)} \frac{(Y(0s\theta)^{2}}{(Y(0s\theta)^{2} + (Ys(0\theta))^{2}}$
 $= \lim_{(Y,0) \to (0^{+}, ?)} (0s^{2}\theta)$
The limit depends on θ , therefore it doesn't coalst.
21. Solution: Let $y = pxx$, then.

• • • • • •

$$\lim_{(x,y)\to(0,0)} \frac{xy}{3x^2+2y^2} = \lim_{(x,y)\to(0,0)} \frac{x(mx)}{3x^2+2(mx)^2}$$
$$= \lim_{(x,y)\to(0,0)} \frac{mx^2}{3x^2+2m^2x^2} = \frac{m}{3+2m^2}$$

32. Solution: Let
$$\begin{cases} x = Y \cos \theta \\ y = Y \sin \theta \end{cases}$$
. then.

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = \lim_{(y,\theta)\to(0^+,?)} \frac{\gamma^2 \cos\theta \sin\theta}{\sqrt{\gamma^2 \cos^2\theta + \gamma^2 \sin^2\theta}}$$

$$= \lim_{(x,\theta)\to(0^+,?)} \gamma \frac{\sin^2\theta}{2}$$
Observe that $\sin^2\theta \in [-1,1]$ for all θ in R .
then,
 $0 = \lim_{y\to0^+} \frac{-\gamma}{2} \leq \lim_{(x,\theta)\to(0^+,?)} \gamma \frac{\sin^2\theta}{2} \leq \lim_{y\to0^+} \frac{\gamma}{2} = 0$
the limit is 0 by squeeze theorem.

42. solution: Let
$$y = x - 1$$
 then
 $y = y - 1$

$$\lim_{(X,y)\to(l,1)} \frac{\chi^2+y^2-2}{|X-1|+|y-1|} = \lim_{(u,v)\to(0,0)} \frac{|(u+l)^2+(v+l)^2-2}{|w|+|v|!}$$

$$= \lim_{(u,v)\to(0,0)} \frac{|u^2+2u+v^2+2v!}{|w|+|v|!}$$

$$\lim_{(u,v)\to(0,0)} \frac{|u^2+2u+v^2+2v!}{|w|+|v|!}$$

$$\lim_{(u,v)\to(0,0)} \frac{|u+1|v|!}{|w|+|v|!}$$

$$\lim_{V \to 0} \frac{V^{2} + 2V}{|V|}$$
Since
$$\lim_{V \to 0^{+}} \frac{V^{2} + 2V}{|V|} = \lim_{V \to 0^{+}} \frac{V^{2} + 2V}{|V|}$$

$$= \lim_{V \to 0^{+}} V + 2 = 2$$

$$\lim_{V \to 0^{+}} \frac{V^{2} + 2V}{|V|} = \lim_{V \to 0^{-}} \frac{V^{2} + 2V}{-V}$$

$$= \lim_{V \to 0^{-}} -V - 2$$

$$= -2$$

$$2 \neq -2, \lim_{V \to 0} \frac{V^{2} + 2V}{|V|} \text{ ONE } = \lim_{(x,y) \to (l,i)} \frac{X^{2} + y - 2}{|X - 1| + |Y|} \text{ DNE},$$

47. Solution: Yes.
Let
$$\begin{cases} X_i = Y \cos \theta \\ y = Y \sin \theta \end{cases}$$
 then

 $f(x,y) = f(y) = \begin{cases} \gamma^2 & \gamma^2 < 1 \\ 1 & \gamma^2 \ge 1 \end{cases}$ $\lim_{x \to 1^+} f(x) = \lim_{y \to 1^+} 1 = 1$

$$\lim_{r \to 1^-} f(r) = \lim_{r \to 1^-} \gamma^2 = |^2 = |$$

then
$$\lim_{Y \to 1} f(v) = 1$$

 $x \to 1$
 $\lim_{Y \to 1} f(v) = 1$, then
 $\lim_{Y \to 1} f(v) = f(1)$
 $f(v)$ is continuous at $v=1$
 $= f(x,y)$ is continuous on R^2 .