14.1
8. Solution: Domain $=\{(x, y):|x| \leq 9, y \in R\}$

14.2. 12. $\lim _{(x, y) \rightarrow(2,5)} \frac{f(x, y)}{f(x, y)+g(x, y)}$

$$
\begin{aligned}
& =\frac{\lim _{(x, y) \rightarrow(2,5)} f(x, y)}{\lim _{(x, y) \rightarrow(2,5)} f(x, y)+\lim _{(x, y) \rightarrow(2,5)} g(x, y)} \\
& =\frac{3}{3+7}=\frac{3}{10}
\end{aligned}
$$

15. Solution: $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$
if $y=m x$ then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$

$$
\begin{aligned}
& =\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+(m x)^{3}}{x(m x)^{2}} \\
& =\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+m^{3} x^{3}}{m^{2} x^{3}}=\frac{1+m^{3}}{m^{2}}
\end{aligned}
$$

The limit depends on the value of m, therefore it doesn't exist.
18. Solution: Let $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$ then

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} f(x, y) & =\lim _{(r, \theta) \rightarrow\left(0^{+}, ?\right)!} \frac{(r \cos \theta)^{3}}{(r \cos \theta)^{2}+(r \sin \theta)^{2}} \\
& =\lim _{(r, \theta) \rightarrow\left(0^{+}, ? ?\right)} r \cos ^{3} \theta
\end{aligned}
$$

Observe that $\cos \theta$ is in $[-1,1]$ for all real θ.

$$
0=\lim _{\gamma \rightarrow 0^{+}}-\gamma \leqslant \lim _{\left.(\gamma, \theta) \rightarrow\left(0^{+}, ?\right) ?\right)} \gamma \cos ^{3} \theta \leqslant \lim _{\gamma \rightarrow 0^{+}} \gamma=0
$$

then the limit equals 0 by Squeeze theorem.

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} g(x, y) & =\lim _{(r, \theta) \rightarrow\left(0^{+}, ?\right)} \frac{(r \cos \theta)^{2}}{(r \cos \theta)^{2}+(r \sin \theta)^{2}} \\
& =\lim _{\left.(r, \theta) \rightarrow\left(0^{+}, ?\right)!\right)} \cos ^{2} \theta
\end{aligned}
$$

The limit depends on θ, therefore it doesn't exist.
21. Solution: Let $y=m x$, then.

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{3 x^{2}+2 y^{2}} & =\lim _{(x, y) \rightarrow(0,0)} \frac{x(m x)}{3 x^{2}+2(m x)^{2}} \\
& =\lim _{(x, y) \rightarrow(0,0)} \frac{m x^{2}}{3 x^{2}+2 m^{2} x^{2}}=\frac{m}{3+2 m^{2}}
\end{aligned}
$$

The limit depends on the Value of m, it doesn't exist.
32. Solution: Let $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$. then.

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}} & =\lim _{(r, \theta) \rightarrow\left(0^{+},!!\right)} \frac{r^{2} \cos \theta \sin \theta}{\sqrt{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta}} \\
& =\lim _{(r, \theta) \rightarrow\left(0^{+}, ?!\right)} r \frac{\sin 2 \theta}{2}
\end{aligned}
$$

Observe that $\sin 2 \theta \in[-1,1]$ for all θ in R.
then,

$$
0=\lim _{\gamma \rightarrow 0^{+}} \frac{-\gamma}{2} \leqslant \lim _{\left.(r, \theta) \rightarrow\left(0^{+},!\right)\right)} \frac{\gamma \sin 2 \theta}{2} \leqslant \lim _{\gamma \rightarrow 0^{+}} \frac{\gamma}{2}=0
$$

the limit is 0 by squeeze theorem.
42. solution: Let $\left\{\begin{array}{l}u=x-1 \\ v=y-1\end{array}\right.$ then

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}+y^{2}-2}{|x-1|+|y-1|} & =\lim _{(u, v) \rightarrow(0,0)} \frac{(u+1)^{2}+(v+1)^{2}-2}{|u|+|v|} \\
& =\lim _{(u, v) \rightarrow(0,0)} \frac{u^{2}+2 u+v^{2}+2 v}{|u|+|v|}
\end{aligned}
$$

choosing the direction $u=0 \quad v \rightarrow 0$ then the limit changes into

$$
\lim _{v \rightarrow 0} \frac{v^{2}+2 v}{|v|}
$$

Since $\quad \lim _{V \rightarrow 0^{+}} \frac{v^{2}+2 v}{1 v 1}=\lim _{v \rightarrow 0^{+}} \frac{v^{2}+2 V}{v}$

$$
=\lim _{v \rightarrow 0^{+}} v+2=2
$$

$$
\lim _{V \rightarrow 0^{-}} \frac{V^{2}+2 V}{|V|}=\lim _{V \rightarrow 0^{-}} \frac{V^{2}+2 V}{-V}
$$

$$
=\lim _{V \rightarrow 0^{-}}-V-2
$$

$$
=-2
$$

$2 \neq-2, \quad \lim _{V \rightarrow 0} \frac{V^{2}+2 V}{|V|}$ ONE $\Rightarrow \lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}+y-2}{|x-1|+|y-1|}$ DNE,
47. Solution: Yes.

$$
\begin{aligned}
& \text { Let }\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right. \\
& f(x, y)=f(r) \text { then } \\
& \lim _{r \rightarrow 1^{+}} f(r)= \begin{cases}r^{2} & r^{2}<1 \\
1 & r^{2} \geqslant 1\end{cases} \\
& \lim _{r \rightarrow 1^{+}} 1=1
\end{aligned}
$$

$$
\lim _{r \rightarrow 1^{-}} f(r)=\lim _{r \rightarrow 1^{-}} r^{2}=1^{2}=1
$$

then $\lim _{v \rightarrow 1} f(v)=1$
also since $f(1)=1$, then

$$
\lim _{r \rightarrow 1} f(v)=f(1)
$$

$\Rightarrow f(r)$ is continuous at $r=1$
$\Rightarrow f(x, y)$ is continuous on R^{2}.

