HW 2 Solution

Section 14.3: 9. slope of tangent line of the curve at (1,1,6) $\frac{\partial f}{\partial x}|_{(1,1)} = \frac{\partial}{\partial x}(x^{4}+6xy-y^{4})|_{(1,1)}$ $= 4x^{3}+6y|_{(1,1)} = 4c17^{3}+6=10$

$$19. \ \mathcal{Z} = \overset{\mathcal{X}}{\mathcal{Y}} : \overset{\mathcal{D}}{\rightarrow \mathcal{X}} = \overset{\mathcal{D}}{\rightarrow \mathcal{X}} (\overset{\mathcal{X}}{\mathcal{Y}}) = \overset{\mathcal{D}}{\mathcal{Y}} \\ \overset{\mathcal{D}}{\frac{\partial \mathcal{Z}}{\partial \mathcal{Y}}} = \overset{\mathcal{D}}{\frac{\partial \mathcal{Y}}{\partial \mathcal{Y}}} (\overset{\mathcal{X}}{\mathcal{Y}}) = \overset{\mathcal{D}}{\mathcal{Y}} \\ \overset{\mathcal{D}}{\frac{\partial \mathcal{Z}}{\partial \mathcal{Y}}} = \overset{\mathcal{D}}{\frac{\partial \mathcal{Y}}{\partial \mathcal{Y}}} (\overset{\mathcal{X}}{\mathcal{Y}}) = \overset{\mathcal{D}}{\mathcal{Y}} \\ \overset{\mathcal{D}}{\mathcal{Y}}^{2}$$

$$25. \ \mathcal{Z} = (OS(\frac{FX}{Y}); \frac{\partial Z}{\partial x} = (-Sin(\frac{FX}{Y})) \cdot \frac{\partial}{\partial x}(\frac{FX}{Y})$$
$$= (-Sin(\frac{FX}{Y}))(\frac{FY}{Y}) = \frac{1}{Y}Sin(\frac{FX}{Y})$$
$$\frac{\partial Z}{\partial y} = (-Sin(\frac{FX}{Y}))\frac{\partial}{\partial y}(\frac{FX}{Y})$$
$$= (-Sin(\frac{FX}{Y}))(-1)\frac{(FX)}{Y^{2}}$$
$$= \frac{(F-X)}{Y^{2}}Sin(\frac{FX}{Y})$$

43.
$$f_{x}(x,y) = \frac{\partial f}{\partial x} |_{(1,2)} = \frac{\partial}{\partial x} (3x^{2}y + 4x^{3}y^{2} - 7xy^{5}) |_{(1,2)}$$

= $6xy + 12x^{2}y^{2} - 7y^{5} |_{(1,2)}$
= $12 + 48 - 7(2^{5}) = -164$

$$\frac{\partial W}{\partial x} = \frac{\partial W}{\partial x^2} = \frac{\partial W}{\partial y^2} = 2 \times y^2 = \frac{\partial W}{\partial y^2} = \frac{\partial W}{\partial x^2} = \frac{\partial$$

49: (a) The level curve is more intense cut p than Q, With some Δf vertically (where $\Delta f > 0$), $0 < \Delta y_Q$

Since
$$f_{y} \cong \frac{\Delta f}{\Delta y}$$
 then $f_{y(p)} > f_{y(Q)}$.
also with same Δf horizontally (where $\Delta f < 0$), $0 < \Delta X_{p} < \Delta X_{Q}$
Since $f_{X} \cong \frac{\Delta f}{\Delta X}$ then $f_{X(p)} < f_{X(Q)} \Rightarrow f_{X}$ is more negative
(b) For fixed $X=\alpha$, $f_{X}(\alpha, y) \cong \frac{\Delta f}{\Delta X} = \frac{f(\alpha + \Delta X, y) - f(\alpha, y)}{\Delta X}$

The curves are more and more sparse with increasing of Y, which means with same Δf (where $\Delta f < 0$), Δx is getting larger, then the absolute value of $\frac{\Delta f}{\Delta x}$; s getting smaller, thus $|f_x(a,y)|$ is decreasing with Y.

$$53. \frac{\partial f}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} (3x^{2}y - 6xy^{4}) \right)$$
$$= \frac{\partial}{\partial x} (6xy - 6y^{4})$$
$$= 6y$$
$$\frac{\partial^{2} f}{\partial y^{2}} = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} (3x^{2}y - 6xy^{4}) \right)$$
$$= \frac{\partial}{\partial y} (3x^{2} - 24xy^{3})$$
$$= -72xy^{2}$$

57.
$$fyy(2,3) = \frac{\partial^2 f}{\partial y^2} |_{(2,3)} = \frac{\partial}{\partial y} (\frac{\partial}{\partial y} (\chi \ln y^2)) |_{(2,3)}$$

= $\frac{\partial}{\partial y} (2\chi \frac{f}{y}) |_{(2,3)}$
= $\frac{-2\chi}{y^2} |_{(2,3)} = -\frac{4}{9}$

$$\begin{aligned} & \int u = \frac{\partial}{\partial u} \left((\partial S(U+V^2)) = -Sin(U+V^2) \right) \\ & \int u u = \frac{\partial}{\partial u} \left(-Sin(U+V^2) \right) = -(OS(U+V^2)) \\ & \int u u v = \frac{\partial}{\partial V} \left(-(OS(U+V^2)) = Sin(U+V^2) \cdot \frac{\partial}{\partial V} (U+V^2) \right) \\ & = Sin(U+V^2) (2V) \end{aligned}$$

75. (b).
$$U \times x = \frac{\partial}{\partial x} (\frac{\partial}{\partial x} (e^{x} (osy)))$$

 $= \frac{\partial}{\partial x} ((osy) e^{x})$
 $= (osy) e^{x}$
 $Uyy = \frac{\partial}{\partial y} (\frac{\partial}{\partial y} (e^{x} (osy)))$
 $= \frac{\partial}{\partial y} (e^{x} (-siny))$
 $= e^{x} (-siny)$
 $so_{x} Uxx + Uyy = e^{x} (osy + e^{x} (-siny))$
 $= 0$
 $= 0$
 $= 0$
 U is a harmonic function.