HW 2 solution
section 14.3:
9. slope of tangent line of the curve at $(1,1,6)$

$$
\begin{aligned}
\left.\frac{\partial f}{\partial x}\right|_{(1,1)} & =\left.\frac{\partial}{\partial x}\left(x^{4}+6 x y-y^{4}\right)\right|_{(1.1)} \\
& =4 x^{3}+\left.6 y\right|_{(1.1)}=4(1)^{3}+6=10
\end{aligned}
$$

19. $z=\frac{x}{y} \quad: \quad \frac{\partial z}{\partial x}=\frac{\partial}{\partial x}\left(\frac{x}{y}\right)=\frac{1}{y}$

$$
\begin{aligned}
\frac{\partial z}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x}{y}\right)=\frac{-x}{y^{2}} \\
25 \cdot z=\cos \left(\frac{1-x}{y}\right): \frac{\partial z}{\partial x} & =\left(-\sin \left(\frac{1-x}{y}\right)\right) \cdot \frac{\partial}{\partial x}\left(\frac{1-x}{y}\right) \\
& =\left(-\sin \left(\frac{1-x}{y}\right)\right)\left(-\frac{1}{y}\right)=\frac{1}{y} \sin \left(\frac{1-x}{y}\right) \\
\frac{\partial z}{\partial y} & =\left(-\sin \left(\frac{1-x}{y}\right)\right) \frac{\partial}{\partial y}\left(\frac{1-x}{y}\right) \\
& =\left(-\sin \left(\frac{1-x}{y}\right)\right)(-1) \frac{(1-x)}{y^{2}} \\
& =\frac{(1-x)}{y^{2}} \sin \left(\frac{1-x}{y}\right)
\end{aligned}
$$

43.

$$
\begin{aligned}
f_{x}(x, y)=\left.\frac{\partial f}{\partial x}\right|_{(1,2)} & =\left.\frac{\partial}{\partial x}\left(3 x^{2} y+4 x^{3} y^{2}-7 x y^{5}\right)\right|_{(1,2)} \\
& =6 x y+12 x^{2} y^{2}-\left.7 y^{5}\right|_{(1,2)} \\
& =12+48-7\left(2^{5}\right)=-164
\end{aligned}
$$

39. wax, $y^{2} z^{3}: \begin{aligned} & \frac{\partial w}{\partial w}=y^{2} z^{3} \quad \frac{\partial w}{\partial y}=2 x y z^{3} \\ & \frac{\partial w}{\partial x}=3 x y^{2} z^{2}\end{aligned}$

$$
\frac{\partial w}{\partial z}=3 x y^{2} z^{2}
$$

49: (a) The level curve is more intense at p than Q, With same Δf vertically (where $\Delta f>0$), $0<\Delta y_{p}<\Delta y_{Q}$

Since $f_{y} \approx \frac{\Delta f}{\Delta y}$ then $f_{y}(p)>f_{y}(Q)$.
also with same Δf horizontally (where $\Delta f<0$), $0<\Delta X_{p}<\Delta x_{Q}$
since $f_{x} \approx \frac{\Delta f}{\Delta x}$ then $f_{x}(p)<f_{x}(Q) \Rightarrow f_{x}$ is more negative
(b) For fixed $x=a, f_{x}(a, y) \approx \frac{\Delta f}{\Delta x}=\frac{f(a+\Delta x, y)-f(a, y)}{\Delta x}$

The curves are more and more sparse with increasing of y, which means with same Δf (where $\Delta f<0)$, Δx is getting larger, then the absolute value of $\frac{\Delta f}{\Delta x}$ is getting smaller, thus $\left|f_{x}(a, y)\right|$ is decreasing with y.
53.

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\left(3 x^{2} y-6 x y^{4}\right)\right) \\
& =\frac{\partial}{\partial x}\left(6 x y-6 y^{4}\right) \\
& =6 y \\
\frac{\partial^{2} f}{\partial y^{2}} & =\frac{\partial}{\partial y}\left(\frac{\partial}{\partial y}\left(3 x^{2} y-6 x y^{4}\right)\right) \\
& =\frac{\partial}{\partial y}\left(3 x^{2}-24 x y^{3}\right) \\
& =-72 x y^{2}
\end{aligned}
$$

57.

$$
\begin{aligned}
f_{y y}(2,3) & =\left.\frac{\partial^{2} f}{\partial y^{2}}\right|_{(2,3)}=\left.\frac{\partial}{\partial y}\left(\frac{\partial}{\partial y}\left(x \ln y^{2}\right)\right)\right|_{(2,3)} \\
& =\left.\frac{\partial}{\partial y}\left(2 x \frac{1}{y}\right)\right|_{(2,3)} \\
& =\left.\frac{-2 x}{y^{2}}\right|_{(2,3)}=\frac{-4}{9}
\end{aligned}
$$

61.

$$
\begin{aligned}
& f_{u}=\frac{\partial}{\partial u}\left(\cos \left(u+v^{2}\right)\right) \\
& f_{u u}=-\frac{\partial}{\partial u}\left(-\sin \left(u+v^{2}\right)\right. \\
& f_{u u v}=\frac{\partial}{\partial v}\left(-\cos \left(u+v^{2}\right)\right)=-\cos \left(u+v^{2}\right) \\
&=\sin \left(u+v^{2}\right) \cdot \frac{\partial}{\partial v}\left(u+v^{2}\right) \\
&=\sin \left(u+v^{2}\right)(2 v)
\end{aligned}
$$

75. (b)

$$
\begin{aligned}
u_{x x} & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\left(e^{x} \cos y\right)\right) \\
& \left.=\frac{\partial}{\partial x}(\cos y) e^{x}\right) \\
& =(\cos y) e^{x} \\
u_{y y} & =\frac{\partial}{\partial y}\left(\frac{\partial}{\partial y}\left(e^{x} \cos y\right)\right) \\
& =\frac{\partial}{\partial y}\left(e^{x}(-\sin y)\right) \\
& =e^{x}(-\cos y)
\end{aligned}
$$

So, $u_{x x}+u_{y y}=e^{x} \cos y+e^{x}(-\cos y)$

$$
=0
$$

$\Rightarrow U$ is a harmonic function.

