Hw11

Section 7.3 6 Let $c_{1} x^{(1)}+c_{2} x^{(2)}+c_{3} x^{(3)}=0$, then

$$
\left[\begin{array}{c}
c_{1} \\
c_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
c_{2} \\
c_{2}
\end{array}\right]+\left[\begin{array}{c}
c_{3} \\
0 \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We have $\left\{\begin{array}{l}c_{1}+c_{3}=0 \\ c_{1}+c_{2}=0 \\ c_{2}+c_{3}=0 .\end{array}\right.$
Therefore $c_{1}=c_{2}=c_{3}=0$ and $x^{(1)}, x^{(2)}$, and $x^{(3)}$ are linearly independent.

8 Let $c_{1} x^{(1)}+c_{2} x^{(2)}+c_{3} x^{(3)}+c_{4} x^{(4)}=0$, then

$$
\left[\begin{array}{c}
c_{1} \\
2 c_{1} \\
-c_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
2 c_{2} \\
3 c_{2} \\
c_{2} \\
-c_{2}
\end{array}\right]+\left[\begin{array}{c}
-c_{3} \\
0 \\
2 c_{3} \\
2 c_{3}
\end{array}\right]+\left[\begin{array}{c}
3 c_{4} \\
-c_{4} \\
c_{4} \\
3 c_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

We have $\begin{cases}c_{1}+2 c_{2}-c_{3}+3 c_{4} & =0 \\ 2 c_{1}+3 c_{2}-c_{4} & =0 \\ -c_{1}+c_{2}+2 c_{3}+c_{4} & =0 \\ -c_{2}+2 c_{3}+3 c_{4} & =0 .\end{cases}$
Therefore $c_{1}=c_{2}=c_{3}=c_{4}=0$ and $x^{(1)}, x^{(2)}, x^{(3}$, and $x^{(4)}$ are linearly independent.

14

$$
|A-\lambda I|=\left|\begin{array}{ll}
5-\lambda & -1 \\
3 & 1-\lambda
\end{array}\right|=(\lambda-5)(\lambda-1)+3=\lambda^{2}-6 \lambda+8=0 \rightarrow \lambda_{1}=2, \lambda_{2}=4
$$

For $\lambda_{1}=2$

$$
\left[\begin{array}{ll}
5 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=2\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow 5 x_{1}-x_{2}=2 x_{1} \Longrightarrow x_{2}=3 x_{1} .
$$

The eigenvector is $\xi_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

For $\lambda_{2}=4$

$$
\left[\begin{array}{ll}
5 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow 5 x_{1}-x_{2}=4 x_{1} \Longrightarrow x_{2}=x_{1} .
$$

The eigenvector is $\xi_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

16

$$
|A-\lambda I|=\left|\begin{array}{ll}
-2-\lambda & 1 \\
1 & -2-\lambda
\end{array}\right|=(\lambda+2)(\lambda+2)-1=\lambda^{2}+4 \lambda+3=0 \rightarrow \lambda_{1}=-1, \lambda_{2}=-3
$$

For $\lambda_{1}=-1$

$$
\left[\begin{array}{ll}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow-2 x_{1}+x_{2}=-x_{1} \Longrightarrow x_{2}=x_{1}
$$

The eigenvector is $\xi_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
For $\lambda_{2}=-3$

$$
\left[\begin{array}{ll}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-3\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow-2 x_{1}+x_{2}=-3 x_{1} \Longrightarrow x_{2}=-x_{1}
$$

The eigenvector is $\xi_{2}=\left[\begin{array}{l}1 \\ -1\end{array}\right]$.
Section 7.5 3. $A=\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$
Solution:

$$
|A-\lambda I|=\left|\begin{array}{ll}
2-\lambda & -1 \\
3 & -2-\lambda
\end{array}\right|=\lambda^{2}-4+3=\lambda^{2}-1=0 \rightarrow \lambda_{1}=1, \quad \lambda_{2}=-1
$$

For $\lambda_{1}=1$

$$
\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \Longrightarrow x_{1}-x_{2}=0
$$

The eigenvector is $\xi_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

For $\lambda_{2}=-1$

$$
\left[\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \Longrightarrow 3 x_{1}-x_{2}=0
$$

The eigenvector is $\xi_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
The general solution is $X=C_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{t}+C_{2}\left[\begin{array}{l}1 \\ 3\end{array}\right] e^{-t}$

