Hw3 Solution

Section 2.6 3.
$$(3x^2 - 2xy + 2) + (6y^2 - x^2 + 3)y' = 0$$

Solution: $M(x, y) = 3x^2 - 2xy + 2$, $N(x, y) = 6y^2 - x^2 + 3$
 $\frac{\partial M}{\partial y} = -2x$, $\frac{\partial N}{\partial x} = -2x = \frac{\partial M}{\partial y} \Longrightarrow$ it is exact.
 $\psi(x, y) = \int M(x, y)dx = \int 3x^2 - 2xy + 2dx = x^3 - x^2y + 2x + C_1(y),$
 $\psi(x, y) = \int N(x, y)dy = \int 6y^2 - x^2 + 3dy = 2y^3 - x^2y + 3y + C_2(x),$
 \Longrightarrow
 $C_1(y) = 2y^3 + 3y,$
 $C_2(x) = x^3 + 2x,$
 \Longrightarrow
 $\psi(x, y) = x^3 - x^2y + 2x + 2y^3 + 3y.$

Therefore the solution is

$$\psi(x,y) = C \Longrightarrow x^3 - x^2y + 2x + 2y^3 + 3y = C.$$

4.
$$\frac{dy}{dx} = -\frac{ax+by}{bx+cy}$$

Solution: $(ax + by)dx + (bx + cy)dy = 0$
 $M(x, y) = ax + by, N(x, y) = bx + cy$
 $\frac{\partial M}{\partial y} = b, \quad \frac{\partial N}{\partial x} = b = \frac{\partial M}{\partial y} \implies \text{it is exact.}$
 $\psi(x, y) = \int M(x, y)dx = \int ax + bydx = \frac{1}{2}ax^2 + bxy + C_1(y),$
 $\psi(x, y) = \int N(x, y)dy = \int bx + cydy = bxy + \frac{1}{2}y^2 + C_2(x),$
 \implies
 $C_1(y) = \frac{1}{2}y^2,$
 $C_2(x) = \frac{1}{2}x^2,$
 \implies
 $\psi(x, y) = \frac{1}{2}ax^2 + bxy + \frac{1}{2}y^2.$

Therefore the solution is

$$\psi(x,y) = C \Longrightarrow \frac{1}{2}ax^2 + bxy + \frac{1}{2}y^2 = C.$$

9.
$$(2x - y) + (2y - x)y' = 0$$

Solution:
$$(2x - y)dx + (2y - x)dy = 0$$

$$M(x, y) = 2x - y, N(x, y) = 2y - x$$

$$\frac{\partial M}{\partial y} = -1, \quad \frac{\partial N}{\partial x} = -1 = \frac{\partial M}{\partial y} \implies \text{it is exact.}$$

$$\psi(x, y) = \int M(x, y)dx = \int 2x - ydx = x^2 - xy + C_1(y),$$

$$\psi(x, y) = \int N(x, y)dy = \int 2y - xdy = -xy + y^2 + C_2(x),$$

$$\implies$$

$$C_1(y) = y^2,$$

$$C_2(x) = x^2,$$

$$\implies$$

$$\psi(x, y) = x^2 - xy + y^2.$$

Therefore the solution is

$$\psi(x,y) = C \Longrightarrow x^2 - xy + y^2 = C.$$

Since y(1) = 3, we have 1 - 3 + 9 = C and $x^2 - xy + y^2 - 7 = 0$. Therefore

$$y = \frac{x \pm \sqrt{x^2 - 4(x^2 - 7)}}{2} = \frac{x \pm \sqrt{-3x^2 + 28}}{2}$$

Since y(1) = 3, we only take "+" and $y = \frac{x + \sqrt{x^2 - 4(x^2 - 7)}}{2} = \frac{x \pm \sqrt{-3x^2 + 28}}{2}$. This requires that $-3x^2 + 28 \ge 0 \Longrightarrow |x| \le \sqrt{\frac{28}{3}}$.

11. $(xy^2 + bx^2y) + ((x + y)x^2)y' = 0$ Solution: $M(x, y) = xy^2 + bx^2y$, $N(x, y) = (x + y)x^2$ $\frac{\partial M}{\partial y} = 2xy + bx^2$, $\frac{\partial N}{\partial x} = x^2 + 2(x + y)x = 3x^2 + 2xy = \frac{\partial M}{\partial y} \Longrightarrow b = 3$ it is exact. $\psi(x, y) = \int M(x, y)dx = \int xy^2 + 3x^2ydx = \frac{1}{2}x^2y^2 + x^3y + C_1(y),$ $\psi(x, y) = \int N(x, y)dy = \int (x + y)x^2dy = x^3y + \frac{1}{2}x^2y^2 + C_2(x),$ \Longrightarrow $C_1(y) = 0,$ $C_2(x) = 0,$ \Rightarrow $\psi(x, y) = \frac{1}{2}x^2y^2 + x^3y.$ Therefore the solution is

$$\psi(x,y) = C \Longrightarrow \frac{1}{2}x^2y^2 + x^3y = C.$$

14. Proof: M(x, y) = M(x), N(x, y) = N(y) $\frac{\partial M}{\partial y} = 0, \quad \frac{\partial N}{\partial x} = 0 = \frac{\partial M}{\partial y} \Longrightarrow$ it is exact.