Problems

Determine whether each of the equations in Problems 1 through 8 is exact. If it is exact, find the solution.

1. $(2 x+3)+(2 y-2) y^{\prime}=0$
2. $(2 x+4 y)+(2 x-2 y) y^{\prime}=0$
3. $\left(3 x^{2}-2 x y+2\right)+\left(6 y^{2}-x^{2}+3\right) y^{\prime}=0$
4. $\frac{d y}{d x}=-\frac{a x+b y}{b x+c y}$
5. $\frac{d y}{d x}=-\frac{a x-b y}{b x-c y}$
6. $\left(y e^{x y} \cos (2 x)-2 e^{x y} \sin (2 x)+2 x\right)+\left(x e^{x y} \cos (2 x)-3\right) y^{\prime}=0$
7. $(y / x+6 x)+(\ln x-2) y^{\prime}=0, \quad x>0$
8. $\frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \frac{d y}{d x}=0$

In each of Problems 9 and 10 , solve the given initial value problem and determine at least approximately where the solution is valid.
9. $(2 x-y)+(2 y-x) y^{\prime}=0, \quad y(1)=3$
10. $\left(9 x^{2}+y-1\right)-(4 y-x) y^{\prime}=0, \quad y(1)=0$

In each of Problems 11 and 12 , find the value of b for which the given equation is exact, and then solve it using that value of b.
11. $\left(x y^{2}+b x^{2} y\right)+(x+y) x^{2} y^{\prime}=0$
12. $\left(y e^{2 x y}+x\right)+b x e^{2 x y} y^{\prime}=0$
13. Assume that equation (6) meets the requirements of Theorem 2.6 .1 in a rectangle R and is therefore exact. Show that a possible function $\psi(x, y)$ is

$$
\psi(x, y)=\int_{x_{0}}^{x} M\left(s, y_{0}\right) d s+\int_{y_{0}}^{y} N(x, t) d t
$$

where $\left(x_{0}, y_{0}\right)$ is a point in R.
14. Show that any separable equation

$$
M(x)+N(y) y^{\prime}=0
$$

is also exact.
In each of Problems 15 and 16 , show that the given equation is not exact but becomes exact when multiplied by the given integrating factor. Then solve the equation.
15. $x^{2} y^{3}+x\left(1+y^{2}\right) y^{\prime}=0, \quad \mu(x, y)=1 /\left(x y^{3}\right)$
16. $(x+2) \sin y+(x \cos y) y^{\prime}=0, \quad \mu(x, y)=x e^{x}$
17. Show that if $\left(N_{x}-M_{y}\right) / M=Q$, where Q is a function of y only, then the differential equation

$$
M+N y^{\prime}=0
$$

has an integrating factor of the form

$$
\mu(y)=\exp \int Q(y) d y
$$

In each of Problems 18 through 21, find an integrating factor and solve the given equation.
18. $\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0$
19. $y^{\prime}=e^{2 x}+y-1$
20. $1+(x / y-\sin y) y^{\prime}=0$
21. $y+\left(2 x y-e^{-2 y}\right) y^{\prime}=0$
22. Solve the differential equation

$$
\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0
$$

using the integrating factor $\mu(x, y)=(x y(2 x+y))^{-1}$. Verify that the solution is the same as that obtained in Example 4 with a different integrating factor.

