Hw11 Solution

Section 7.81 (c). $A=\left(\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right)$

> Solution:

$$
|A-\lambda I|=\left|\begin{array}{ll}
3-\lambda & -4 \\
1 & -1-\lambda
\end{array}\right|=(\lambda-3)(\lambda+1)+4=\lambda^{2}-2 \lambda+1=0 \rightarrow \lambda=1
$$

For $\lambda=1$

$$
\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \Longrightarrow x_{1}-2 x_{2}=0
$$

The eigenvector is $\Gamma=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

$$
\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Longrightarrow x_{1}=2 x_{2}+1
$$

$\Gamma_{2}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$. The general solution is
$X=C_{1} e^{t}\left[\begin{array}{l}2 \\ 1\end{array}\right]+C_{2}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t e^{t}+\left[\begin{array}{l}3 \\ 1\end{array}\right] e^{t}\right)$

7(a). $A=\left(\begin{array}{ll}-5 / 2 & 3 / 2 \\ -3 / 2 & 1 / 2\end{array}\right) \quad x(0)=\left[\begin{array}{l}3 \\ -1\end{array}\right]$

Solution:

$|A-\lambda I|=\left|\begin{array}{ll}-5 / 2-\lambda & 3 / 2 \\ -3 / 2 & 1 / 2-\lambda\end{array}\right|=(\lambda+5 / 2)(\lambda-1 / 2)+9 / 4=\lambda^{2}+2 \lambda+1=0 \rightarrow \lambda=-1$.
For $\lambda=-1$

$$
\left[\begin{array}{ll}
-3 / 2 & 3 / 2 \\
-3 / 2 & 3 / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \Longrightarrow x_{1}-x_{2}=0
$$

The eigenvector is $\Gamma=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

$$
\left[\begin{array}{cc}
-3 / 2 & 3 / 2 \\
-3 / 2 & 3 / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Longrightarrow x_{2}=x_{1}+2 / 3
$$

$\Gamma_{2}=\left[\begin{array}{l}-2 / 3 \\ 0\end{array}\right]$. The general solution is
$X=C_{1} e^{-t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+C_{2}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right] t e^{-t}+\left[\begin{array}{l}-2 / 3 \\ 0\end{array}\right] e^{-t}\right)$

$$
\begin{aligned}
& x(0)=\left[\begin{array}{l}
3 \\
-1
\end{array}\right] \Longrightarrow C_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{l}
-2 / 3 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
-1
\end{array}\right] \\
& \Longrightarrow C_{1}-2 / 3 C_{2}=3 \quad C_{1}=-1 \\
& \Longrightarrow C_{1}=-1 \quad C_{2}=-6 .
\end{aligned}
$$

The solution is

$$
X==-e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-6\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t e^{-t}+\left[\begin{array}{l}
-2 / 3 \\
0
\end{array}\right] e^{-t}\right)=e^{-t}\left[\begin{array}{l}
3 \\
-1
\end{array}\right]-t e^{-t}\left[\begin{array}{l}
6 \\
6
\end{array}\right]
$$

$8(\mathrm{a}) . \quad A=\left(\begin{array}{ll}3 & 9 \\ -1 & -3\end{array}\right) \quad x(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$
Solution:

$$
|A-\lambda I|=\left|\begin{array}{ll}
3-\lambda & 9 \\
-1 & -3-\lambda
\end{array}\right|=(\lambda-3)(\lambda+3)+9=\lambda^{2}=0 \rightarrow \lambda=0
$$

For $\lambda=0$

$$
\left[\begin{array}{ll}
3 & 9 \\
-1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \Longrightarrow x_{1}+3 x_{2}=0
$$

The eigenvector is $\Gamma=\left[\begin{array}{l}-3 \\ 1\end{array}\right]$.

$$
\left[\begin{array}{ll}
3 & 9 \\
-1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
-3 \\
1
\end{array}\right] \Longrightarrow x_{1}=-3 x_{2}-1
$$

$\Gamma_{2}=\left[\begin{array}{l}-1 \\ 0\end{array}\right]$. The general solution is

$$
X=C_{1}\left[\begin{array}{l}
-3 \\
1
\end{array}\right]+C_{2}\left(\left[\begin{array}{l}
-3 \\
1
\end{array}\right] t+\left[\begin{array}{l}
-1 \\
0
\end{array}\right]\right)
$$

$$
\begin{aligned}
x(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right] & \Longrightarrow C_{1}\left[\begin{array}{l}
-3 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{l}
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \\
& \Longrightarrow-3 C_{1}-C_{2}=2 \quad C_{1}=4 \\
& \Longrightarrow C_{1}=4 \quad C_{2}=-14 .
\end{aligned}
$$

The solution is

$$
X==4\left[\begin{array}{l}
-3 \\
1
\end{array}\right]-14\left(\left[\begin{array}{l}
-3 \\
1
\end{array}\right] t+\left[\begin{array}{l}
-1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]-14 t\left[\begin{array}{l}
-3 \\
1
\end{array}\right]
$$

