## Hw6 Solution

Section 3.1 29. Solution:

$$
y^{\prime \prime}-\frac{t(t+2)}{t^{2}} y^{\prime}+\frac{t+2}{t^{2}} y=0
$$

$p(t)=-\frac{t(t+2)}{t^{2}}$ and

$$
W=C e^{-\int p(t) d t}=C e^{\int \frac{t(t+2)}{t^{2}}} d t=C e^{\int 1+2 / t d t}=C e^{t+2 \ln |t|}=C t^{2} e^{|t|} .
$$

Section 3.3 5. $y^{\prime \prime}-2 y^{\prime}+2 y=0$
Solution:
$r^{2}-2 r+2=0 \Longrightarrow r=\frac{2 \pm \sqrt{-4}}{2}=1 \pm i$.
We have $\lambda=1, \quad \mu=1$ and

$$
y_{1}(t)=e^{\lambda t} \cos \mu t=e^{t} \cos t \quad y_{2}(t)=e^{\lambda t} \sin \mu t=e^{t} \sin t .
$$

The general solution is $y=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{t} \cos t+C_{2} e^{t} \sin t$.
9. $y^{\prime \prime}+2 y^{\prime}+1.25 y=0$

Solution:
$r^{2}+2 r+1.25=0 \Longrightarrow r=\frac{-2 \pm \sqrt{-1}}{2}=-1 \pm i / 2$.
We have $\lambda=-1, \quad \mu=1 / 2$ and

$$
y_{1}(t)=e^{\lambda t} \cos \mu t=e^{-t} \cos t / 2 \quad y_{2}(t)=e^{\lambda t} \sin \mu t=e^{-t} \sin t / 2 .
$$

The general solution is $y=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{-t} \cos t / 2+C_{2} e^{-t} \sin t / 2$.
12. $y^{\prime \prime}+4 y=0, \quad y(0)=0, y^{\prime}(0)=1$

Solution:
$r^{2}+4=0 \Longrightarrow r=\frac{ \pm \sqrt{-16}}{2}= \pm 2 i$.
We have $\lambda=0, \quad \mu=2$ and

$$
y_{1}(t)=e^{\lambda t} \cos \mu t=\cos 2 t \quad y_{2}(t)=e^{\lambda t} \sin \mu t=\sin 2 t .
$$

The general solution is

$$
y=C_{1} y_{1}+C_{2} y_{2}=C_{1} \cos 2 t+C_{2} \sin 2 t .
$$

$$
y^{\prime}=-2 C_{1} \sin 2 t+2 C_{2} \cos 2 t .
$$

$$
\begin{aligned}
y(0)=0 & \Longrightarrow C_{1}=0 \\
y^{\prime}(0)=1 & \Longrightarrow 2 C_{2}=1 \\
& \Longrightarrow \\
& C_{1}=0 \quad C_{2}=1 / 2
\end{aligned}
$$

$y(t)=\frac{1}{2} \sin 2 t$. Steady oscillation for increasing $t$.
13. $y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(\pi / 2)=0, y^{\prime}(\pi / 2)=1$

Solution:
$r^{2}-2 r+5=0 \Longrightarrow r=\frac{2 \pm \sqrt{-16}}{2}=1 \pm 2 i$.
We have $\lambda=1, \quad \mu=2$ and

$$
y_{1}(t)=e^{\lambda t} \cos \mu t=e^{t} \cos 2 t \quad y_{2}(t)=e^{\lambda t} \sin \mu t=e^{t} \sin 2 t .
$$

The general solution is $y=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{t} \cos 2 t+C_{2} e^{t} \sin 2 t$.
$y^{\prime}=-2 C_{1} e^{t}(\cos 2 t-\sin 2 t)+2 C_{2} e^{t}(\sin 2 t+\cos 2 t)$.

$$
\begin{aligned}
y(\pi / 2)=0 & \Longrightarrow-C_{1} e^{\pi / 2}=0 \\
y^{\prime}(\pi / 2)=2 & \Longrightarrow-C_{1} e^{\pi / 2}-2 C_{2} e^{\pi / 2}=2 \\
& \Longrightarrow \\
& C_{1}=0 \quad C_{2}=-e^{-\pi / 2}
\end{aligned}
$$

$y(t)=e^{-\pi / 2} e^{2} \sin 2 t$. growing oscillation for increasing $t$.
Section 3.4

1. $y^{\prime \prime}-2 y^{\prime}+y=0$

Solution:
$r^{2}-2 r+1=0 \Longrightarrow r_{1}=r_{2}=r=1$.
We have $\lambda=1, \quad \mu=1$ and

$$
y_{1}(t)=e^{r t}=e^{t} \quad y_{2}(t)=t e^{r t}=t e^{t} .
$$

The general solution is
$y=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{t}+C_{2} t e^{t}$.
7. $16 y^{\prime \prime}+24 y^{\prime}+9 y=0$

Solution:
$16 r^{2}+24 r+9=0 \Longrightarrow(4 r+3)^{2}=0 \Longrightarrow r_{1}=r_{2}=r=-3 / 4$.
We have

$$
y_{1}(t)=e^{r t}=e^{-3 / 4 t} \quad y_{2}(t)=t e^{r t}=t e^{-3 / 4 t} .
$$

The general solution is $y=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{-3 / 4 t}+C_{2} t e^{-3 / 4 t}$.
9. $9 y^{\prime \prime}-12 y^{\prime}+4 y=0 \quad y(0)=2, y^{\prime}(0)=-1$.

## Solution:

$9 r^{2}-12 r+4=0 \Longrightarrow(3 r-2)^{2}=0 \Longrightarrow r_{1}=r_{2}=r=2 / 3$.
We have

$$
y_{1}(t)=e^{r t}=e^{2 / 3 t} \quad y_{2}(t)=t e^{r t}=t e^{2 / 3 t}
$$

The general solution is $y=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{2 / 3 t}+C_{2} t e^{2 / 3 t}$.
Therefore

$$
\begin{aligned}
& y^{\prime}(t)=2 / 3 C_{1} e^{2 / 3 t}+C_{2} e^{2 / 3 t}+2 / 3 C_{2} t e^{2 / 3 t} \\
& y(0)=2 \Longrightarrow C_{1}=2 \\
& y^{\prime}(0)=-1 \Longrightarrow 2 / 3 C_{1}+C_{2}=-1 \\
& \Longrightarrow \\
& C_{1}=2 \quad C_{2}=-7 / 3
\end{aligned}
$$

$$
y(t)=2 e^{2 / 3 t}-7 / 3 t e^{2 / 3 t} \quad y \rightarrow-\infty \text { as } t \rightarrow+\infty
$$

12. $y^{\prime \prime}-y^{\prime}+y / 4=0 \quad y(0)=2, y^{\prime}(0)=b$.

Solution:
$r^{2}-r+1 / 4=0 \Longrightarrow(r-1 / 2)^{2}=0 \Longrightarrow r_{1}=r_{2}=r=1 / 2$.
We have

$$
y_{1}(t)=e^{r t}=e^{t / 2} \quad y_{2}(t)=t e^{r t}=t e^{t / 2}
$$

The general solution is $y=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{t / 2}+C_{2} t e^{t / 2}$.
Therefore

$$
y^{\prime}(t)=C_{1} / 2 e^{t / 2}+C_{2} e^{t / 2}+C_{2} / 2 t e^{t / 2}
$$

$$
\begin{aligned}
y(0)=2 & \Longrightarrow C_{1}=2 \\
y^{\prime}(0)=b & \Longrightarrow C_{1} / 2+C_{2} / 2=b \\
& \Longrightarrow C_{1}=2 \quad C_{2}=2 b-2 .
\end{aligned}
$$

$y(t)=2 e^{t / 2}+(2 b-2) t e^{t / 2}=e^{t / 2}(2+(2 b-2) t)$
When $2 b-2=0 \Longrightarrow b=1, y=2 e^{t / 2}$ is always positive. When $b \neq 1, y$ can be negative depending on the value of $t$. Therefore $b=1$ that seperates solutions that beome negative from those that are always positive.

