Hw8

1 Determine ω_{0}, R, and δ so as to write the given expression in the form $u=R \cos \left(\omega_{0} t-\right.$ $\delta)$.
(1) $u=3 \cos (2 t)+4 \sin (2 t)$;
(2) $u=-3 \cos (2 t)+4 \sin (2 t)$.

Solution:
(1)

$$
\begin{aligned}
u & =3 \cos 2 t+4 \sin 2 t \\
& =\sqrt{3^{2}+4^{2}} \cos (2 t-\delta) \\
& =5 \cos (2 t-\delta)
\end{aligned}
$$

where

$$
\tan \delta=\frac{4}{3} \Longrightarrow \delta \approx 0.9273
$$

Therefore, $\omega_{0}=2, R=5$, and $\delta \approx 0.9273$.
(2)

$$
\begin{aligned}
u & =-3 \cos 2 t+4 \sin 2 t \\
& =\sqrt{3^{2}+4^{2}} \cos (2 t-\delta) \\
& =5 \cos (2 t-\delta)
\end{aligned}
$$

where

$$
\tan \delta=-\frac{4}{3} \Longrightarrow \delta \approx \pi-0.9273=2.2143
$$

Therefore, $\omega_{0}=2, R=5$, and $\delta \approx 2.2143$.
2. A mass weighting 2 lb stretches a spring 6 in . If the mass is pulled down an additional 3 in and then released, and if there is no danping, determine the position u of the mass at any time t, Find the frequency, period, amplitude, and phase of the motion.

Solution:

$$
\begin{aligned}
& w=2, m g=w \Longrightarrow m=\frac{w}{g}=\frac{2}{32} . \\
& k L=m g \Longrightarrow k=\frac{m g}{L}=\frac{2}{6 / 12}=4 .
\end{aligned}
$$

We have $m u^{\prime \prime}+k u=0 \Longrightarrow \frac{2}{32} u^{\prime \prime}+4 u=0$ with $u(0)=3 / 12=1 / 4$ (the mass pulled down 3 inch) and $u^{\prime}(0)=0$ (release without any velocity).

We solve this initial value problem as follows:
$2 / 32 r^{2}+4=0 \Longrightarrow r= \pm 8 i$.
We have $\lambda=0, \quad \mu=8$ and

$$
u_{1}(t)=e^{\lambda t} \cos \mu t=\cos 8 t \quad u_{2}(t)=e^{\lambda t} \sin \mu t=\sin 8 t .
$$

The general solution is $u=C_{1} u_{1}+C_{2} u_{2}=C_{1} \cos 8 t+C_{2} \sin 8 t$.
$u^{\prime}=-8 C_{1} \sin 8 t+8 C_{2} \cos 8 t$.

$$
\begin{aligned}
u(0)=1 / 4 & \Longrightarrow C_{1}=1 / 4 \\
u^{\prime}(0)=0 & \Longrightarrow C_{2}=0 \\
& \Longrightarrow \\
& C_{1}=1 / 4 \quad C_{2}=0
\end{aligned}
$$

Therefore the solution is $u(t)=1 / 4 \cos 8 t$.
$\omega=8, T=\frac{2 \pi}{\omega}=\pi / 4, R=\frac{1}{4}, \delta=0$.

