## Hw9

Section 7.1

1. $u^{\prime \prime}+0.5 u^{\prime}+2 u=0$

Solution: Let $x_{1}=u, x_{2}=x_{1}^{\prime}=u^{\prime}$ and we have $x_{1}^{\prime}=x_{2}$.

$$
u^{\prime \prime}+0.5 u^{\prime}+2 u=x_{2}^{\prime}+0.5 x_{2}+2 x_{1}=0 \Longrightarrow x_{2}^{\prime}=-0.5 x_{2}-2 x_{1} .
$$

Therefore

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-2 x_{1}-0.5 x_{2}
\end{array}\right.
$$

4. $u^{\prime \prime}+0.25 u^{\prime}+4 u=2 \cos (3 t), \quad u(0)=1, u^{\prime}(0)=-2$

Solution: Let $x_{1}=u, x_{2}=x_{1}^{\prime}=u^{\prime}$ and we have $x_{1}^{\prime}=x_{2}$.

$$
u^{\prime \prime}+0.25 u^{\prime}+4 u=x_{2}^{\prime}+0.25 x_{2}+4 x_{1}=2 \cos (3 t) \Longrightarrow x_{2}^{\prime}=-0.25 x_{2}-4 x_{1}+2 \cos (3 t)
$$

Therefore

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-0.25 x_{2}-4 x_{1}+2 \cos (3 t) .
\end{array} \quad \text { with the initial condition } x_{1}(0)=1 \text { and } x_{2}(0)=-2 .\right.
$$

Section 7.2
4. $A=\left(\begin{array}{ll}3-2 i & 1+i \\ 2-i & -2+3 i\end{array}\right)$

Solution:
a. $A^{T}=\left(\begin{array}{ll}3-2 i & 2-i \\ 1+i & -2+3 i\end{array}\right)$
b. $\bar{A}=\left(\begin{array}{ll}3+2 i & 1-i \\ 2+i & -2-3 i\end{array}\right)$
c. $A^{*}=\left(\begin{array}{ll}3+2 i & 2+i \\ 1+i & -2+3 i\end{array}\right)$
$7 x=\left(\begin{array}{l}2 \\ 3 i \\ 1-i\end{array}\right) \quad y=\left(\begin{array}{l}-1+i \\ 2 \\ 3-i\end{array}\right)$ Solution:
a.

$$
\begin{aligned}
x^{T} y & =\left(\begin{array}{lll}
2 & 3 i & 1-i
\end{array}\right)\left(\begin{array}{l}
-1+i \\
2 \\
3-i
\end{array}\right) \\
& =2(-1+i)+3 i \cdot 2++(1-i)(3-i) \\
& =-2+2 i+6 i+3-3 i-i-4 i=4 i
\end{aligned}
$$

b.

$$
\begin{aligned}
y^{T} y & =\left(\begin{array}{lll}
-1+i & 2 & 3-i
\end{array}\right)\left(\begin{array}{l}
-1+i \\
2 \\
3-i
\end{array}\right) \\
& =(-1+i)^{2}+2^{2}++(3-i)^{2} \\
& =1-1-2 i+4+9-6 i-1=12-8 i
\end{aligned}
$$

c.

$$
\begin{aligned}
(x, y) & =\sum_{i=1}^{3} x_{i} \bar{y}_{i} \\
& =(2(-1-i)+3 i \cdot 2+(1-i)(3+i) \\
& =-2-2 i+6 i+3-3 i+i+1=2+2 i
\end{aligned}
$$

d.

$$
\begin{aligned}
(y, y) & =\sum_{i=1}^{3} y_{i} \bar{y}_{i} \\
& =(-1+i)(-1-i)+2 \cdot 2+(3-i)(3+i) \\
& =1+1+4+9+1=16 .
\end{aligned}
$$

Section 7.3 6 Let $c_{1} x^{(1)}+c_{2} x^{(2)}+c_{3} x^{(3)}=0$, then

$$
\left[\begin{array}{c}
c_{1} \\
c_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
c_{2} \\
c_{2}
\end{array}\right]+\left[\begin{array}{c}
c_{3} \\
0 \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We have $\left\{\begin{array}{l}c_{1}+c_{3}=0 \\ c_{1}+c_{2}=0 \\ c_{2}+c_{3}=0 .\end{array}\right.$

Therefore $c_{1}=c_{2}=c_{3}=0$ and $x^{(1)}, x^{(2)}$, and $x^{(3)}$ are linearly independent.

8 Let $c_{1} x^{(1)}+c_{2} x^{(2)}+c_{3} x^{(3)}+c_{4} x^{(4)}=0$, then

$$
\left[\begin{array}{c}
c_{1} \\
2 c_{1} \\
-c_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
2 c_{2} \\
3 c_{2} \\
c_{2} \\
-c_{2}
\end{array}\right]+\left[\begin{array}{c}
-c_{3} \\
0 \\
2 c_{3} \\
2 c_{3}
\end{array}\right]+\left[\begin{array}{c}
3 c_{4} \\
-c_{4} \\
c_{4} \\
3 c_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

We have $\begin{cases}c_{1}+2 c_{2}-c_{3}+3 c_{4} & =0 \\ 2 c_{1}+3 c_{2}-c_{4} & =0 \\ -c_{1}+c_{2}+2 c_{3}+c_{4} & =0 \\ -c_{2}+2 c_{3}+3 c_{4} & =0 .\end{cases}$
Therefore $c_{1}=c_{2}=c_{3}=c_{4}=0$ and $x^{(1)}, x^{(2)}, x^{(3}$, and $x^{(4)}$ are linearly independent.

14

$$
|A-\lambda I|=\left|\begin{array}{ll}
5-\lambda & -1 \\
3 & 1-\lambda
\end{array}\right|=(\lambda-5)(\lambda-1)+3=\lambda^{2}-6 \lambda+8=0 \rightarrow \lambda_{1}=2, \lambda_{2}=4
$$

For $\lambda_{1}=2$

$$
\left[\begin{array}{ll}
5 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=2\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow 5 x_{1}-x_{2}=2 x_{1} \Longrightarrow x_{2}=3 x_{1} .
$$

The eigenvector is $\xi_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
For $\lambda_{2}=4$

$$
\left[\begin{array}{ll}
5 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow 5 x_{1}-x_{2}=4 x_{1} \Longrightarrow x_{2}=x_{1} .
$$

The eigenvector is $\xi_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

16

$$
|A-\lambda I|=\left|\begin{array}{ll}
-2-\lambda & 1 \\
1 & -2-\lambda
\end{array}\right|=(\lambda+2)(\lambda+2)-1=\lambda^{2}+4 \lambda+3=0 \rightarrow \lambda_{1}=-1, \lambda_{2}=-3
$$

For $\lambda_{1}=-1$

$$
\left[\begin{array}{ll}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow-2 x_{1}+x_{2}=-x_{1} \Longrightarrow x_{2}=x_{1}
$$

The eigenvector is $\xi_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
For $\lambda_{2}=-3$

$$
\left[\begin{array}{ll}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-3\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow-2 x_{1}+x_{2}=-3 x_{1} \Longrightarrow x_{2}=-x_{1}
$$

The eigenvector is $\xi_{2}=\left[\begin{array}{l}1 \\ -1\end{array}\right]$.

