Math 781 Hw2

due Wednesday 09/07/2022.

1. Let $x=(1.11 \cdots 111000 \cdots)_{2} \times 2^{16}$, in which the fraction part has 261 's followed by 0 's. For the Marc-32, determine $x_{-}, x_{+}, f l(x), x-x_{-}, x_{+}-x, x_{+}-x_{-}$, and $\left|\frac{x-f l(x)}{x}\right|$.
2. Which if these is not necessarily true on the Marc-32? (Here x, y, and z are machine numbers and $|\delta| \leq 2^{-24}$.
(a) $f l(x y)=x y(1+\delta)$
(b) $f l(x+y)=(x+y)(1+\delta)$
(c) $f l(x y)=\frac{x y}{1+\delta}$
(d) $\mid f l(x y)-x y)\left|\leq|x y| 2^{-24}\right.$
(e) $f l(x+y+z)=(x+y+z)(1+\delta)$
3. Are these machine numbers in the Marc-32?
(a) 10^{40}
(b) $2^{-1}+2^{-26}$
(c) $\frac{1}{5}$
(d) $\frac{1}{3}$
(e) $\frac{1}{256}$
4. Let $x=2^{16}+2^{-8}+2^{-9}+2^{-10}$. What is $|x-f l(x)|$ in the Marc- 32 ?
5. In a typical floating point number system a non-zero number x is stored in the form

$$
x=\sigma \cdot\left(. a_{1} a_{2} a_{3} \cdots a_{t}\right)_{\beta} \cdot \beta^{e},
$$

where $\sigma=+1$ or $-1, a_{1} \neq 0,0 \leq a_{i} \leq \beta-1, t=53, \beta=2$, and $-1023 \leq e \leq 1024$.
(a) Find the greatst and smallest positive numbers and the unit roundoff.
(b) Which of the following are the numbers in this typical floating point number system?

$$
10, \quad 1+2^{-53}, \quad 1-2^{-53}, \quad 2^{1024}
$$

