Math 781 Hw3 Solution

1. How many bits of precision are lost in a computer when we carry out the subtraction $x-\sin x$ for $x=\frac{1}{2}$?
Solution: Since $x=x$ and $y=\sin x, 1-\frac{y}{x}=1-\frac{\sin x}{x}$.
For $x=\frac{1}{2}$,

$$
2^{-5} \leq 1-\frac{\sin \frac{1}{2}}{\frac{1}{2}}=0.0411 \leq 2^{-4}
$$

Therefore, at most 5 and at least 4 bits of precision are lost.
2. Suggest ways to avoid loss of significance in these calculations.
(a) $\sqrt{x^{2}+1}-x$
(b) $x^{-3}(\sin x-x)$
(c) $\sqrt{x+2}-\sqrt{x}$

Solution:

(a)

$$
\sqrt{x^{2}+1}-x=\frac{\left(\sqrt{x^{2}+1}-x\right)\left(\sqrt{x^{2}+1}+x\right)}{\sqrt{x^{2}+1}+x}=\frac{x^{2}+1-x^{2}}{\sqrt{x^{2}+1}+x}=\frac{1}{\sqrt{x^{2}+1}+x} .
$$

(b)

$$
x^{-3}(\sin x-x)=x^{-3}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots-x\right)=-\frac{1}{3!}+\frac{x^{2}}{5!}-\cdots .
$$

(c)

$$
\sqrt{x+2}-\sqrt{x}=\frac{(\sqrt{x+2}-\sqrt{x})(\sqrt{x+2}+\sqrt{x})}{\sqrt{x+2}+\sqrt{x}}=\frac{2}{\sqrt{x+2}+\sqrt{x}}
$$

3. Find analytically the solution of this difference equation with the given initial values:

$$
\left\{\begin{array}{l}
x_{0}=1, \quad x_{1}=0.9 \\
x_{n+1}=-0.2 x_{n}+0.99 x_{n-1}
\end{array}\right.
$$

Without computing the solution recursively, predict whether such a computation would be stable.

Solution: Let $x_{n}=r^{n}, x_{n+1}=-0.2 x_{n}+0.99 x_{n-1}$ gives $r^{n+1}=0.2 r^{n}+0.99 r^{n-1} \rightarrow$ $r^{2}+0.2 r-0.99=0 \rightarrow r_{1}=0.9, r_{2}=-1.1$. Therefore, $x_{n}=C_{1} 0.9^{n}+C_{2}(-1.1)^{n}$. The initial conditions $x_{0}=1$ and $x_{1}=0.99$ gives $C_{1}+C_{2}=1$ and $C_{1} 0.9+C_{2}(-1.1)=0.9$. We have $C_{1}=1$ and $C_{2}=0$. So $x_{n}=0.9^{n}$.
Since $(-1.1)^{n} \rightarrow+\infty$ as $n \rightarrow+\infty$, such a computation would be unstable.
4. What are the condition numbers of the following functions? Where are they large?

$$
\text { (1) } f(x)=(x-1)^{\alpha} ; \quad(2) \ln x ; \quad \text { (3) } \sin x
$$

Solution:

(1) $f(x)=(x-1)^{\alpha}$, $f^{\prime}(x)=\alpha(x-1)^{\alpha-1}$, therefore, the condition number is

$$
\frac{x f^{\prime}(x)}{f(x)}=\frac{x \alpha(x-1)^{\alpha-1}}{(x-1)^{\alpha}}=\frac{\alpha x}{x-1}
$$

When x close to 1 , the condition number is large.
(2) $f(x)=\ln x, f^{\prime}(x)=\frac{1}{x}$, therefore, the condition number is

$$
\frac{x f^{\prime}(x)}{f(x)}=\frac{x \frac{1}{x}}{\ln x}=\frac{1}{\ln x} .
$$

When x close to 1 , the condition number is large.
(3) $f(x)=\sin x, f^{\prime}(x)=\cos x$, therefore, the condition number is

$$
\frac{x f^{\prime}(x)}{f(x)}=\frac{x \cos x}{\sin x}
$$

When x close to $\pm k \pi, k=1,2, \cdots$, the condition number is large.

