Math 781 Hw4 Solution

1. Consider the bisection method starting with the interval $[1.5,3.5]$.
(a) What is the width of the interval at the nth step of this method?
(b) What is the maximum distance possible between the root r and the midpoint of this interval?

Solution: $a_{1}=a=1.5, b_{1}=b=3.5$
(a)

$$
b_{n}-a_{n}=\left(\frac{1}{2}\right)^{n-1}\left(b_{1}-a_{1}\right)=\left(\frac{1}{2}\right)^{n-1}(3.5-1.5)=\left(\frac{1}{2}\right)^{n-2}
$$

(b)

$$
\left|r-c_{n}\right| \leq \frac{1}{2}\left(b_{n}-a_{n}\right)=\frac{1}{2}\left(\frac{1}{2}\right)^{n-2}=\left(\frac{1}{2}\right)^{n-1}
$$

2. Let the bisection method be applied to a continuous function, resulting in intervals [a_{1}, b_{1}], and so on. $c_{n}=\frac{a_{n}+b_{n}}{2}$. Let $r=\lim _{n \rightarrow \infty} a_{n}$. Which of the these statements can be false?
(a) $a_{1} \leq a_{2} \leq a_{3} \leq \cdots$
(b) $\left|r-\left(a_{n}+b_{n}\right) / 2\right| \leq 2^{-n}\left(b_{1}-a_{1}\right) \quad n \geq 1$
(c) $\left|r-\left(a_{n+1}+b_{n+1}\right) / 2\right| \leq\left|r-\left(a_{n}+b_{n}\right) / 2\right|$
(d) $\left.] a_{n+1}, b_{n+1}\right] \subseteq\left[a_{n}, b_{n}\right] \quad n \geq 1$
(e) $\left|r-a_{n}\right|=O\left(2^{-n}\right)$ as $n \rightarrow \infty$
(f) $\left|r-c_{n}\right|<\left|r-c_{n-1}\right| \quad n \geq 2$

Solution: (c) and (f).
3. If the bisection method is used starting with the interval [2,3], how many steps must be taken to compute a root with absolute accuracy $<10^{-6}$?

Solution: $a_{1}=2$ and $b_{1}=3$.

$$
\left|r-c_{n}\right| \leq\left(\frac{1}{2}\right)^{n}\left(b_{1}-a_{1}\right) \leq 10^{-6} \rightarrow n \geq \frac{\log (3-2)-\log \left(10^{-6}\right)}{\log 2}=19.9
$$

Therefore, 20 steps must be taken.
4. Suppose the sequence $\left\{p_{n}\right\}$ converges to p and there is a constant $0 \leq k<1$ such that

$$
\left|p_{n}-p\right| \leq k\left|p_{n-1}-p\right|, \quad \forall n \geq 1
$$

Prove that

$$
\left|p_{n}-p\right| \leq \frac{k}{1-k}\left|p_{n}-p_{n-1}\right|, \quad \forall n \geq 1
$$

Proof.

$$
\begin{aligned}
& \left|p_{n}-p\right| \leq k\left|p_{n-1}-p\right|=k\left|p_{n-1}-p_{n}+p_{n}-p\right| \leq k\left(\left|p_{n-1}-p_{n}\right|+\left|p_{n}-p\right|\right) \\
& \rightarrow \\
& (1-k)\left|p_{n}-p\right| \leq k\left|p_{n-1}-p_{n}\right| \\
& \rightarrow \\
& \left|p_{n}-p\right| \leq \frac{k}{1-k}\left|p_{n-1}-p_{n}\right| .
\end{aligned}
$$

5. Consider the fixed-point iteration

$$
p_{n}=\frac{p_{n-1}}{2}+\frac{1}{p_{n-1}}, \quad n=1,2, \cdots .
$$

(a) Determine the function $g(x)$ used in the iteration.
(b) Find the fixed point(s) of $g(x)$.
(c) Show that $\lim _{n \rightarrow \infty} p_{n}=\sqrt{2}$ for any $p_{0}>\sqrt{2}$. (Hint: Show $\sqrt{2}<p_{n}<p_{n-1}$ by induction. You may need the inequalities (1) $a+b>2 \sqrt{a b}$ for $a, b>0$ and $a \neq b$; (2) $\frac{1}{x}<\frac{x}{2}$ for $x>\sqrt{2}$.)
(d) Use the fact that $\left(p_{0}-\sqrt{2}\right)^{2}>0$ whenever $p_{0} \neq \sqrt{2}$ to show that if $0<p_{0}<\sqrt{2}$, then $p_{1}>\sqrt{2}$. (Hint: Show $p_{1}-\sqrt{2}=\frac{\left(p_{0}-\sqrt{2}\right)^{2}}{2 p_{0}}$.)
(e) Using (c) and (d) to show $\lim _{n \rightarrow \infty} p_{n}=\sqrt{2}$ for any $p_{0}>0$.

Solution:

(a) $g(x)=\frac{x}{2}+\frac{1}{x}$.
(b) For any $p_{0}>\sqrt{2}$, since $\frac{p_{n-1}}{2} \neq \frac{1}{p_{n-1}}$, we have

$$
p_{n}=\frac{p_{n-1}}{2}+\frac{1}{p_{n-1}}>2 \sqrt{\frac{p_{n-1}}{2} \frac{1}{p_{n-1}}}=\sqrt{2} .
$$

Moreover, for any $p_{0}>\sqrt{2}, \frac{p_{n-1}}{2}>\frac{1}{p_{n-1}}$ and $p_{n}<\frac{p_{n-1}}{2}+\frac{p_{n-1}}{2}=p_{n-1} \cdot p_{n}$ is a decreasing sequence and has a lower bound. Therefore, we have $\lim _{n \rightarrow \infty} p_{n}=p^{*}$ exists. Taking a limit on

$$
p_{n}=\frac{p_{n-1}}{2}+\frac{1}{p_{n-1}}, \quad n=1,2, \cdots
$$

we have $p^{*}=\frac{p^{*}}{2}+\frac{1}{p^{*}}$ and $p^{*}=\sqrt{2}$.
(c) For $0<p_{0}<\sqrt{2}$, we have

$$
p_{1}=\frac{p_{0}}{2}+\frac{1}{p_{0}}=\frac{p_{0}^{2}+2}{2 p_{0}}=\frac{\left(p_{0}-\sqrt{2}\right)^{2}}{2 p_{0}}+\sqrt{2}>\sqrt{2}
$$

(d) Therefore, we have for any $p_{0}>0, \lim _{n \rightarrow \infty} p_{n}=\sqrt{2}$.

