Math 781 Hw5

due Monday 09/26/2022.

1. Perform four iterations of Newton's method for the polynomial

$$
f(x)=4 x^{3}-2 x^{2}+3
$$

starting with $x_{0}=-1$.
2. Devise a Newton's algorithm for computing the fifth root of any positive number.
3. Suppose that p is a double zero of the function f. Thus $f(p)=f^{\prime}(p)=0 \neq f^{\prime \prime}(p)$. Show that if $f^{\prime \prime}$ is continuous, then in Newton's method we shall have

$$
\lim _{n \rightarrow \infty} \frac{\left|p-p_{n}\right|}{\left|p-p_{n-1}\right|}=\frac{1}{2}
$$

4. Suppose $f(x)=(x-p)^{k} h(x)$, where $k \geq 1$ is an integer, $h(p) \neq 0$ and $h^{\prime \prime \prime}(x)$ is continuous in a neighborhood of p. Prove the modified Newton's method

$$
p_{n}=p_{n-1}-\frac{k f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}
$$

converges at least quadratically. (Hint: Use the fixed point iteration result to show $\lim _{x \rightarrow p} g^{\prime}(x)=0$.)

