Math 781 Hw5 Solution

1. Perform four iterations of Newton's method for the polynomial

$$
f(x)=4 x^{3}-2 x^{2}+3
$$

starting with $p_{0}=-1$.
Solution: $f^{\prime}(x)=12 x^{2}-4 x$ and

$$
\begin{gathered}
p_{n}=p_{n-1}-\frac{4 p_{n-1}^{3}-2 p_{n-1}^{2}+3}{12 p_{n-1}^{2}-4 p_{n-1}} . \\
p_{0}=1, p_{1}=-0.8125, p_{2}=-0.7708, p_{3}=-0.7688, p_{4}=-0.7688 .
\end{gathered}
$$

2. Devise a Newton's algorithm for computing the fifth root of any positive number.

Solution: We would like to compute $\sqrt[5]{a}, a>0$. Let $f(x)=x^{5}-a$ and $f^{\prime}(x)=5 x^{4}$. The Newton's algorithm is

$$
p_{n}=p_{n-1}-\frac{p_{n-1}^{5}-a}{5 p_{n-1}^{4}}
$$

3. Suppose that p is a double zero of the function f. Thus $f(p)=f^{\prime}(p)=0 \neq f^{\prime \prime}(p)$. Show that if $f^{\prime \prime}$ is continuous, then in Newton's method we shall have

$$
\lim _{n \rightarrow \infty} \frac{\left|p-p_{n}\right|}{\left|p-p_{n-1}\right|}=\frac{1}{2}
$$

Proof.

$$
f(p)=f\left(p_{n-1}\right)+f^{\prime}\left(p_{n-1}\right)\left(p-p_{n-1}\right)+f^{\prime \prime}(\xi) \frac{\left(p-p_{n-1}\right)^{2}}{2}
$$

where ξ is between p and p_{n-1}. We obtain

$$
f\left(p_{n-1}\right)=-f^{\prime}\left(p_{n-1}\right)\left(p-p_{n-1}\right)-f^{\prime \prime}(\xi) \frac{\left(p-p_{n-1}\right)^{2}}{2}
$$

We have

$$
\begin{aligned}
\frac{p-p_{n}}{p-p_{n-1}} & =\frac{p-p_{n-1}+\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}}{p-p_{n-1}} \\
& =\frac{\left(p-p_{n-1}\right) f^{\prime}\left(p_{n-1}\right)+f\left(p_{n-1}\right)}{\left(p-p_{n-1}\right) f^{\prime}\left(p_{n-1}\right)} \\
& =\frac{\left(p-p_{n-1}\right) f^{\prime}\left(p_{n-1}\right)-f^{\prime}\left(p_{n-1}\right)\left(p-p_{n-1}\right)-f^{\prime \prime}(\xi) \frac{\left(p-p_{n-1}\right)^{2}}{2}}{\left(p-p_{n-1}\right) f^{\prime}\left(p_{n-1}\right)} \\
& =f^{\prime \prime}(\xi) \frac{p-p_{n-1}}{2 f^{\prime}\left(p_{n-1}\right)} \rightarrow \frac{1}{2}(n \rightarrow \infty .)
\end{aligned}
$$

4. Suppose $f(x)=(x-p)^{k} h(x)$, where $k \geq 1$ is an integer, $h(p) \neq 0$ and $h^{\prime \prime \prime}(x)$ is continuous in a neighborhood of p. Prove the modified Newton's method

$$
p_{n}=p_{n-1}-\frac{k f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}
$$

converges at least quadratically. (Hint: Use the fixed point iteration result to show $\lim _{x \rightarrow p} g^{\prime}(x)=0$.)
Proof. $g(x)=x-\frac{k f(x)}{f^{\prime}(x)}$. We have

$$
\begin{aligned}
g^{\prime}(x) & =1-\left(k-\frac{k f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}\right)=1-k+k \frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}} \\
& =1-k+k \frac{(x-p)^{k} h(x)\left[k(k-1)(x-p)^{k-2} h(x)+2 k(x-p)^{k-1} h^{\prime}(x)+(x-p)^{k} h^{\prime \prime}(x)\right]}{\left[k(x-p)^{k-1} h(x)+(x-p)^{k} h^{\prime}(x)\right]^{2}} \\
& =1-k+k \frac{h(x)\left[k(k-1) h(x)+2 k(x-p) h^{\prime}(x)+(x-p)^{2} h^{\prime \prime}(x)\right.}{\left[k h(x)+(x-p) h^{\prime}(x)\right]^{2}} \\
& \rightarrow 1-k+k \frac{k(k-1)}{k^{2}}=0 .(x \rightarrow p)
\end{aligned}
$$

