Math 781 Hw6 Solution

1. If a secant method is applied to the function $f(x) = x^2 - 2$, with $x_0 = 0$ and $x_1 = 1$. What is x_2 ? Solution: $x_0 = 0$, $x_1 = 1$, $f(x_0) = 0 - 2 = -2$, $f(x_1) = 1^2 - 2 = -1$

$$x_2 = x_1 - \frac{f(x_1)(x_1 - x_0)}{f(x_1) - f(x_0)} = 1 - \frac{(-1)(1 - 0)}{-1 - (-2)} = 1 + 1 = 2.$$

$$x_0 = 7$$
, $x_1 = 1$, and $x_2 = 2$.

$$L_0 = \frac{(x-1)(x-2)}{(7-1)(7-2)} = \frac{(x-1)(x-2)}{30},$$

$$L_1 = \frac{(x-7)(x-2)}{(1-7)(1-2)} = \frac{(x-7)(x-2)}{6},$$

$$L_2 = \frac{(x-7)(x-1)}{(2-7)(2-1)} = -\frac{(x-7)(x-1)}{5},$$

$$P_2(x) = 146L_0 + 2L_1 + L_2 = \frac{146}{30}(x-1)(x-2) + \frac{1}{3}(x-7)(x-2) - \frac{1}{5}(x-7)(x-1).$$

3. Prove that if g interpolates the function f at x_0, x_1, \dots, x_{n-1} and if h interpolates f at x_1, x_2, \dots, x_n , then the function

$$g(x) + \frac{x_0 - x}{x_n - x_0} (g(x) - h(x))$$

interpolate f at x_0, x_1, \dots, x_n . (Hint: You need to check the function value at x_i equals to $f(x_i)$.).

Proof. Since g interpolates the function f at x_0, x_1, \dots, x_{n-1} , we have $g(x_i) = f(x_i)$ for $i = 0, \dots, n-1$. Similarly, we have $h(x_i) = f(x_i)$ for $i = 1, \dots, n$.

For i = 0, we have

$$g(x_0) + \frac{x_0 - x_0}{x_n - x_0} (g(x_0) - h(x_0)) = f(x_0) + 0 = f(x_0);$$

For $i = 1, \dots, n-1$, we have $g(x_i) = h(x_i) = f(x_i)$ and

$$g(x_i) + \frac{x_0 - x_i}{x_n - x_0} (g(x_i) - h(x_i)) = f(x_i) + 0 = f(x_i);$$

For i = n, we have $h(x_n) = f(x_n)$ and

$$g(x_n) + \frac{x_0 - x_n}{x_n - x_0} (g(x_n) - h(x_n)) = g(x_n) - (g(x_n) - f(x_n)) = f(x_n).$$

4. Prove that $\sum_{i=0}^{n} L_i(x) = 1$ for all x, where $L_i(x)$ is the Lagrange interpolation polynomial basis. (Hint: Consider the interpolation polynomial for the function f(x) = 1.)

Proof. Let f(x) = 1 and $P_n(x)$ be the interpolation polynomial which interpolates f(x) at x_0, \dots, x_n . Using the Lagrange interpolation basis, we have

$$P_n(x) = \sum_{i=0}^n f(x_i) L_x(x).$$

Since f(x) = 1, $P_0 = 1$ interpolates f(x) at $x_0, \dots x_n$. Due to the uniqueness of the interpolation polynomial, we have $P_n(x) = 1$ and $f(x_i) = 1$, we have

$$1 = \sum_{i=0}^{n} L_x(x).$$