Math 781 Hw8 Solution

1. Use the extended Newton divided difference method to obtain a quartic polynomial that takes these values:

	x) 1	2					
p($(x) \mid f$	2 -4	44					
p'	$(x) \mid -$	9 4						
Solution: We have								
\mathbf{Z}	$\int f[z_i]$							
0	2						-	
0	2	-9					-	
1	-4	$\frac{-4-}{1-0}$	$\frac{2}{2} = -6$	$\frac{-6+9}{1-0} = 3$				
1	-4	4			$\frac{10-3}{1-0} = 7$		_	
2	44	$\frac{44+4}{2-1}$	= 48	$\frac{48-4}{2-1} = 44$	$\frac{44-10}{2-0} = 17$	$\frac{17-7}{2-0} = 5$	-	
Therefore $P_4(x) = 2 - 9(x - 0) + 3(x - 0)(x - 0) + 7(x - 0)^2(x - 1) + 5(x - 0)^2(x - 1)^2 = 2 - 9x + 3x^2 + 7x^2(x - 1) + 5x^2(x - 1)^2.$								

2. Determine whether this is a quadratic spline function:

$$f(x) = \begin{cases} x & x \in (-\infty, 1]; \\ -\frac{1}{2}(2-x)^2 + \frac{3}{2} & x \in [1, 2]; \\ \frac{3}{2} & x \in [2, \infty). \end{cases}$$

Solution: On each interval, f(x) is a polynomial degree ≤ 2 .

(a) At x = 1: f(x) = 1 on (-∞, 1] and f(1) = -¹/₂(2 - 1)² + ³/₂ = 1 on [1, 2], therefore f(x) is continuous at x = 1; f'(x) = 1 on (-∞, 1] and f'(1) = -¹/₂2(2 - 1)(-1) = 1 on [1, 2], therefore f'(x) is continuous at x = 1;
(b) At x = 2: f(x) = -¹/₂(2 - 2)² + ³/₂ = ³/₂ on [1, 2] and f(1) = ³/₂ on [2, ∞),

therefore
$$f(x)$$
 is continuous at $x = 2$;
 $f'(2) = -\frac{1}{2}2(2-2)(-1) = 0$ on [1,2], and $f'(2) = 0$ on $[2, \infty)$,
therefore $f'(x)$ is continuous at $x = 2$;

This is a quadratic spline function.

3. Determine whether this is a natural cubic spline:

$$f(x) = \begin{cases} 2(x+1) + (x+1)^3 & x \in [-1,0];\\ 3+5x+3x^2 & x \in [0,1];\\ 11+11(x-1) + 3(x-1)^2 - (x-1)^3 & x \in [1,2]. \end{cases}$$

Solution: On each interval, f(x) is a polynomial degree ≤ 3 .

This is a natural cubic spline function.

4. Determine the values of (a, b, c) that makes the function

$$f(x) = \begin{cases} x^3 & x \in [0,1];\\ \frac{1}{2}(x-1)^3 + a(x-1)^2 + b(x-1) + c & x \in [1,3] \end{cases}$$

a cubic spline. Is it a natural cubic spline? *Solution*:

(a) At x = 1: f(1) = 1³ = 1 on [0, 1], f(1) = c on [1, 3], since f(x) is continuous at x = 1, therefore c = 1. f'(1) = 3 on [0, 1], f'(1) = b on [1, 3], since f'(x) is continuous at x = 1, therefore b = 3. f''(1) = 6 on [0, 1], f'(1) = 2a on [1, 3], since f''(x) is continuous at x = 1, therefore 2a = 6 and a = 3.
(b) f''(0) = 6(0) = 0 and f''(3) = 3(3 - 1) + 2a = 12 ≠ 0 Therefore it is not a natural cubic spline.