Math 781 Hw8 Solution

1. Use the extended Newton divided difference method to obtain a quartic polynomial that takes these values:

x	0	1	2
$p(x)$	2	-4	44
$p^{\prime}(x)$	-9	4	

Solution: We have

z	$f\left[z_{i}\right]$				
0	2				
0	2	-9			
1	-4	$\frac{-4-2}{1-0}=-6$	$\frac{-6+9}{1-0}=3$		
1	-4	4	$\frac{4+6}{1-0}=10$	$\frac{10-3}{1-0}=7$	
2	44	$\frac{44+4}{2-1}=48$	$\frac{48-4}{2-1}=44$	$\frac{44-10}{2-0}=17$	$\frac{17-7}{2-0}=5$

Therefore $P_{4}(x)=2-9(x-0)+3(x-0)(x-0)+7(x-0)^{2}(x-1)+5(x-0)^{2}(x-1)^{2}=$ $2-9 x+3 x^{2}+7 x^{2}(x-1)+5 x^{2}(x-1)^{2}$.
2. Determine whether this is a quadratic spline function:

$$
f(x)= \begin{cases}x & x \in(-\infty, 1] ; \\ -\frac{1}{2}(2-x)^{2}+\frac{3}{2} & x \in[1,2] ; \\ \frac{3}{2} & x \in[2, \infty)\end{cases}
$$

Solution: On each interval, $f(x)$ is a polynomial degree ≤ 2.
(a) At $x=1$:
$f(x)=1$ on $(-\infty, 1]$ and $f(1)=-\frac{1}{2}(2-1)^{2}+\frac{3}{2}=1$ on $[1,2]$,
therefore $f(x)$ is continuous at $x=1$;
$f^{\prime}(x)=1$ on $(-\infty, 1]$ and $f^{\prime}(1)=-\frac{1}{2} 2(2-1)(-1)=1$ on $[1,2]$,
therefore $f^{\prime}(x)$ is continuous at $x=1$;
(b) At $x=2$:
$f(x)=-\frac{1}{2}(2-2)^{2}+\frac{3}{2}=\frac{3}{2}$ on $[1,2]$ and $f(1)=\frac{3}{2}$ on $[2, \infty)$,
therefore $f(x)$ is continuous at $x=2$;
$f^{\prime}(2)=-\frac{1}{2} 2(2-2)(-1)=0$ on $[1,2]$, and $f^{\prime}(2)=0$ on $[2, \infty)$,
therefore $f^{\prime}(x)$ is continuous at $x=2$;
This is a quadratic spline function.
3. Determine whether this is a natural cubic spline:

$$
f(x)= \begin{cases}2(x+1)+(x+1)^{3} & x \in[-1,0] \\ 3+5 x+3 x^{2} & x \in[0,1] \\ 11+11(x-1)+3(x-1)^{2}-(x-1)^{3} & x \in[1,2]\end{cases}
$$

Solution: On each interval, $f(x)$ is a polynomial degree ≤ 3.
(a) At $x=0$:
$f(0)=2(0+1)+(0+1)^{3}=5$ on $[-1,0]$ and $f(0)=3+5(0)+3(0)^{2}=3$ on $[0,1]$, therefore $f(x)$ is continuous at $x=0$;
$f^{\prime}(0)=2(0)+3(0+1)^{2}=3$ on $[-1,0]$ and $f^{\prime}(0)=5+6(0)=5$ on $[0,1]$,
therefore $f^{\prime}(x)$ is continuous at $x=0$;
$f^{\prime \prime}(0)=6(0+1)=6$ on $[-1,0]$ and $f^{\prime \prime}(0)=6$ on $[0,1]$,
therefore $f^{\prime \prime}(x)$ is continuous at $x=0$;
(b) At $x=1$:
$f(1)=3+5(1)+3(1)^{2}=11$ on $[0,1]$,
$f(1)=11+11(1-1)+3(1-1)^{2}-(1-1)^{3}=11$ on $[1,2]$,
therefore $f(x)$ is continuous at $x=1$;
$f^{\prime}(1)=5+6(1)=11$ on $[0,1]$,
$f^{\prime}(1)=11+6(1-1)-3(1-1)^{2}=11$ on $[1,2]$,
therefore $f^{\prime}(x)$ is continuous at $x=1$;
$f^{\prime \prime}(1)=6$ on $[0,1]$,
$f^{\prime \prime}(1)=6-6(1-1)=6$ on $[1,2]$,
therefore $f^{\prime \prime}(x)$ is continuous at $x=1$;
(c) $f^{\prime \prime}(-1)=6(-1+1)=0$ and $f^{\prime \prime}(2)=6(2-1)-6(2-1)=0$

This is a natural cubic spline function.
4. Determine the values of (a, b, c) that makes the function

$$
f(x)= \begin{cases}x^{3} & x \in[0,1] \\ \frac{1}{2}(x-1)^{3}+a(x-1)^{2}+b(x-1)+c & x \in[1,3]\end{cases}
$$

a cubic spline. Is it a natural cubic spline?

Solution:

(a) At $x=1$:
$f(1)=1^{3}=1$ on $[0,1]$,
$f(1)=c$ on $[1,3]$,
since $f(x)$ is continuous at $x=1$, therefore $c=1$.
$f^{\prime}(1)=3$ on $[0,1]$,
$f^{\prime}(1)=b$ on $[1,3]$,
since $f^{\prime}(x)$ is continuous at $x=1$, therefore $b=3$.
$f^{\prime \prime}(1)=6$ on $[0,1]$,
$f^{\prime}(1)=2 a$ on $[1,3]$,
since $f^{\prime \prime}(x)$ is continuous at $x=1$, therefore $2 a=6$ and $a=3$.
(b) $f^{\prime \prime}(0)=6(0)=0$ and $f^{\prime \prime}(3)=3(3-1)+2 a=12 \neq 0$

Therefore it is not a natural cubic spline.

