Math 782 Hw1

due Tuesday 01/23/2018.

- 1. Is it true that for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}$, AB = 0 implies either A = 0 or B = 0? Prove or give a counter-example.
- 2. Prove that $A \in \mathbb{C}^{m \times n}$ is rank 1 if and only if there exist nonzero vectors $u \in \mathbb{C}^m$ and $v \in \mathbb{C}^n$ such that $A = uv^*$.
- 3. Suppose $A \in \mathbb{C}^{m \times m}$ is nonsingular and $u, v \in \mathbb{C}^m$.
 - (a) Prove that if $B = A + uv^*$ is nonsingular, then its inverse has the form

$$B^{-1} = A^{-1} + \alpha A^{-1} u v^* A^{-1}$$

for some scalar α . Determine the value of α . Hint: Multiply out BB^{-1} and set it to I. This is the Sherman-Morrison formula.

(b) Find condition(s) on A, u, and v such that B is singular.