Math 782 Hw10

due Tuesday 04/24/2018

- 1. Suppose $A = QTQ^*$ is a Schur form of A, where T is upper triangular and Q is unitary.
 - (a) Show for any $\mu \in \mathbb{C}$, $A \mu I = Q(T \mu I)Q^*$ is a Schur form of $A \mu I$.
 - (b) If A is invertible, show $A^{-1} = QT^{-1}Q^*$ is a Schur form of A^{-1} .
- 2. Let

$$A = \begin{bmatrix} 8 & 1 & 0 \\ 1 & 4 & \epsilon \\ 0 & \epsilon & 1 \end{bmatrix}, \quad \epsilon \in \mathbb{R}, \quad |\epsilon| < 1.$$

- (a) Show that A has only real eigenvalues for any ϵ with the given conditions.
- (b) Use Gershgorin's theorem to estimate the eigenvalues of A.
- (c) Find a way to establish the tighter bound $|\lambda_3 1| \le \epsilon^2$ on the smallest eigenvalue of A.

Hint: Consider diagonal similarity transformation with diagonal $(1, 1, \frac{1}{\epsilon})$ *.*

3. Suppose $A, E \in \mathbb{C}^{m \times m}$ and A is normal. Use the Bauer-Fike Theorem to prove that for any eigenvalue $\tilde{\lambda}$ of $\tilde{A} = A + E$, there exists an eigenvalue λ_i of A such that

$$|\lambda - \lambda_i| \le ||E||_2.$$