Math 782 Hw2

due Tuesday 01/30/2018

1. Suppose the set of vectors $\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{C}^{m}$ is orthogonal. Prove the Pythagorean Theorem:

$$
\left\|v_{1}+\cdots v_{n}\right\|^{2}=\left\|v_{1}\right\|^{2}+\cdots\left\|v_{n}\right\|^{2}
$$

2. Prove that if a matrix A is both upper triangular and unitary, then it is diagonal and $\left|a_{i i}\right|=1$ for all i.
3. A matrix $S \in \mathbb{C}^{m \times m}$ is skew-Hermitian if $S=-S^{*}$. Suppose S is skew-Hermitian.
(a) Prove that $I_{m}-S$ is nonsingular.
(b) Prove that the matrix $Q=\left(I_{m}-S\right)^{-1}\left(I_{m}+S\right)$ is unitary.
4. Prove that for any $x \in \mathbb{C}^{m}$ and $A \in \mathbb{C}^{m \times n}$,
(a) $\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{m}\|x\|_{\infty}$,
(b) $\frac{1}{\sqrt{m}}\|x\|_{1} \leq\|x\|_{2} \leq\|x\|_{1}$,
(c) $\frac{1}{\sqrt{n}}\|A\|_{\infty} \leq\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty}$,
(d) $\frac{1}{\sqrt{m}}\|A\|_{1} \leq\|A\|_{2} \leq \sqrt{n}\|A\|_{1}$.

Hint: Try to use Properties (3), (4) or (5) for the first inequality in (c) and the second inequality in (d).
5. Let $A=u v^{*} \in \mathbb{C}^{m \times n}$ with $u \in \mathbb{C}^{m}$ and $v \in \mathbb{C}^{n}$. Prove
(a) $\|A\|_{1}=\|u\|_{1}\|v\|_{\infty}$,
(b) $\|A\|_{\infty}=\|u\|_{\infty}\|v\|_{1}$.

