Math 782 Hw2

due Tuesday 01/30/2018

1. Suppose the set of vectors $\{v_1, \ldots, v_n\} \subset \mathbb{C}^m$ is orthogonal. Prove the Pythagorean Theorem:

$$||v_1 + \cdots + v_n||^2 = ||v_1||^2 + \cdots + ||v_n||^2.$$

- 2. Prove that if a matrix A is both upper triangular and unitary, then it is diagonal and $|a_{ii}| = 1$ for all *i*.
- 3. A matrix $S \in \mathbb{C}^{m \times m}$ is skew-Hermitian if $S = -S^*$. Suppose S is skew-Hermitian.
 - (a) Prove that $I_m S$ is nonsingular.
 - (b) Prove that the matrix $Q = (I_m S)^{-1}(I_m + S)$ is unitary.
- 4. Prove that for any $x \in \mathbb{C}^m$ and $A \in \mathbb{C}^{m \times n}$,
 - (a) $||x||_{\infty} \le ||x||_2 \le \sqrt{m} ||x||_{\infty}$,
 - (b) $\frac{1}{\sqrt{m}} \|x\|_1 \le \|x\|_2 \le \|x\|_1$,
 - (c) $\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_2 \le \sqrt{m} \|A\|_{\infty}$,
 - (d) $\frac{1}{\sqrt{m}} \|A\|_1 \le \|A\|_2 \le \sqrt{n} \|A\|_1$. Hint: Try to use Properties (3), (4) or (5) for the first inequality in (c) and the second inequality in (d).
- 5. Let $A = uv^* \in \mathbb{C}^{m \times n}$ with $u \in \mathbb{C}^m$ and $v \in \mathbb{C}^n$. Prove
 - (a) $||A||_1 = ||u||_1 ||v||_{\infty}$,
 - (b) $||A||_{\infty} = ||u||_{\infty} ||v||_1.$