Math 782 Hw3

due Tuesday 02/06/2018

1. Determine a compact SVD for the rank-one matrix $A = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix}$.

- 2. Consider the matrix $A = \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix}$.
 - (a) Determine a real full SVD of A in the form $A = U\Sigma V^T$. Hint: Follow the proof. Find the eigenvalues and eigenvectors of $A^T A$ to determine Σ and V. Then determine U.
 - (b) List the singular values, left singular vectors, and the right singular vectors.
 - (c) Use the full SVD of A to determine a full SVD for A^T and A^{-1} .
- 3. Let $A \in \mathbb{C}^{m \times n}$. Prove that

$$||A||_2 = \max_{x \in \mathbb{C}^n, \ y \in \mathbb{C}^m, \ ||x||_2 = 1, \ ||y||_2 = 1} |y^* A x|.$$

Hint: Use the SVD of A to prove $\max_{x \in \mathbb{C}^n, y \in \mathbb{C}^m, \|x\|_2 = 1, \|y\|_2 = 1} |y^*Ax| = \sigma_1 = \max_i \sigma_i$.