Math 782 Hw5

due Tuesday 02/20/2018

1. Suppose $\left\{q_{1}, \cdots, q_{n}\right\} \subset \mathbb{R}^{m}$ is orthonormal. Let $Q=\left[q_{1} \cdots q_{n}\right]$. Prove

$$
I_{m}-Q Q^{*}=\left(I_{m}-q_{n} q_{n}^{*}\right)\left(I_{m}-q_{n-1} q_{n-1}^{*}\right) \cdots\left(I_{m}-q_{1} q_{1}^{*}\right)
$$

2. Suppose $0 \neq v \in \mathbb{C}^{k}$ and a Householder reflector $H(v)$ is defined as $H(v)=I_{k}-2 \frac{v v^{*}}{v^{*} v}$. Let

$$
Q=\left[\begin{array}{cc}
I_{m-k} & 0 \\
0 & H(v)
\end{array}\right] \in \mathbb{C}^{m \times m}
$$

Prove

$$
Q=I_{m}-2 \frac{\hat{v} \hat{v}^{*}}{\hat{v}^{*} \hat{v}}, \quad \hat{v}=\left[\begin{array}{c}
0_{(m-k) \times 1} \\
v
\end{array}\right],
$$

i.e., Q is an $m \times m$ Householder reflector.
3. Prove that H is an $m \times m$ Householder reflector if and only if there is a unitary matrix Q such that

$$
H=Q\left[\begin{array}{ll}
I_{m-1} & \\
& -1
\end{array}\right] Q^{*}
$$

Hint: For "only if" part, you may use $H=H^{*}$ to get a spectral decomposition of H and use $H=H^{-1}$ to show the eigenvalues can only be ± 1. Finally you can use $I-H$ is a rank-1 matrix to show that -1 is a single eigenvalue of H.
For " $i f$ " part, show $H=I_{m}-2 q_{m} q_{m}^{*}$, where q_{m} is the last column of Q.
4. Suppose H is a Householder reflector. Determine the determinant of H and the singular values of H.
Hint: Use the result in the previous problem.

