Math 782 Hw6

due Tuesday 03/06/2018

1. Let

$$
x=\left[\begin{array}{l}
1 \\
4 \\
7 \\
4 \\
4
\end{array}\right], \quad e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

(a) Determine a Householder matrix $H=I-v v^{T} / \beta$ that transforms x to a scalar multiple of e_{1}. You only need to provide the vector v and the scalar β.
(b) Compute the product $H x$ with your H.
2. Suppose $A \in \mathbb{F}^{m \times n}$ has the full column $\operatorname{rank}(\operatorname{rank}(A)=n)$. Prove $A^{*} A$ has a Cholesky factorization. That is, there exists an invertible upper triangular matrix $R \in \mathbb{F}^{n \times n}$ such that $A^{*} A=R^{*} R$.
Hint: Use a reduced QR factorization of A.
3. Suppose $A \in \mathbb{F}^{m \times n}$ has the full column $\operatorname{rank}(\operatorname{rank}(A)=n)$ and $b \in \mathbb{F}^{m}$. Let

$$
A=Q R, \quad Q=\left[\begin{array}{ll}
\widehat{Q} & \widetilde{Q}
\end{array}\right], \quad R=\left[\begin{array}{c}
\widehat{R} \\
0
\end{array}\right]
$$

be a full QR factorization of A, where Q is unitary, $\widehat{Q} \in \mathbb{F}^{m \times n}$, and $\widehat{R} \in \mathbb{F}^{n \times n}$ is upper triangular. Define

$$
\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]:=Q^{*} b=\left[\begin{array}{l}
\widehat{Q}^{*} b \\
\widetilde{Q}^{*} b
\end{array}\right] .
$$

If $x \in \mathbb{F}^{n}$ is the solution to the least squares problem $\min _{x \in \mathbb{F}^{n}}\|b-A x\|_{2}$ and $r=b-A x$, Prove
(a) $A x=\widehat{Q} b_{1}$ and $\widehat{R} x=b_{1}$
(b) $r=\widetilde{Q} b_{2}$ and $\|r\|_{2}=\left\|b_{2}\right\|_{2}$.

