Math 782 Hw7

due Tuesday 03/13/2018

1. Supose $A=\left[a_{i j}\right], E=\left[e_{i j}\right] \in \mathbb{C}^{m \times n}$ and $\widetilde{A}:=A+E$ with the elements satisfying

$$
\frac{\left|e_{i j}\right|}{\left|a_{i j}\right|} \leq c \epsilon_{\text {machine }}
$$

for $i=1, \cdots, m$ and $j=1, \cdots, n$, where c is a constant. If $a_{i j}=0$, we interpret that the inequality implies $e_{i j}=0$.
Derive an upper bound for

$$
\frac{\|\widetilde{A}-A\|}{\|A\|}
$$

where $\|\cdot\|$ is (a): $\|\cdot\|_{1},(\mathrm{~b}):\|\cdot\|_{\infty},(\mathrm{c}):\|\cdot\|_{F}$.
Hint: For each norm, use its definition to derive an upper bound for $\|\widetilde{A}-A\|=\|E\|$.
2. Assume that x, y, and z are floating point numbers. Show that the algorithm of computing $f(x, y, z)=z-x y$ is backward stable in a finite floating point number system with machine precision $\epsilon_{\text {machine }}$.

