## Math 782 Hw8

due Tuesday 04/03/2018

1. Suppose $C \in \mathbb{C}^{m \times m}$ and $x \in \mathbb{C}^{m}$. Consider the matrix-vector multiplication $b=$ $C x$. On a finite floating point number system with machine precision $\epsilon_{\text {machine }}$, the computed approximation to $b$ is $\tilde{b}$, which satisfies

$$
\tilde{b}=(C+\delta C) x, \quad \frac{\|\delta C\|_{2}}{\|C\|_{2}}=O\left(\epsilon_{\text {machine }}\right) .
$$

Here $a=O\left(\epsilon_{\text {machine }}\right)$ means $a=c \epsilon_{\text {machine }}$ for some moderate constant $c \geq 0$. Now, suppose $C$ is unitary. Prove
(a)

$$
\tilde{b}=C(x+\delta x)
$$

for some vector $\delta x \in \mathbb{C}^{m}$ satisfying $\frac{\|\delta x\|_{2}}{\|x\|_{2}}=O\left(\epsilon_{\text {machine }}\right)$.
(b)

$$
\tilde{b}=b+\delta b
$$

for some vector $\delta b \in \mathbb{C}^{m}$ satisfying $\frac{\|\delta b\|_{2}}{\|b\|_{2}}=O\left(\epsilon_{\text {machine }}\right)$.
2. Consider the example

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 1.001 \\
1 & 1.001
\end{array}\right], \quad b=\left[\begin{array}{c}
2 \\
0.001 \\
4.001
\end{array}\right] .
$$

(a) Compute the matrices $A^{+}$and $P$, the orthogonal projector onto range $(A)$. Give the exact answers.
Hint: You may use the formulas $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$ and $P=A\left(A^{T} A\right)^{-1} A^{T}$, and use the inverse formula for $2 \times 2$ matrices

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(b) Find the exact solution $x$ to the least squares problem $\min _{x}\|b-A x\|_{2}$.
(c) Compute $\kappa_{2}(A), \theta=\cos ^{-1}\left(\frac{\|P b\|_{2}}{\|b\|_{2}}\right)$, and $\eta=\frac{\|A\|_{2}\|x\|_{2}}{\|A x\|_{2}}$.
(d) Compute $\frac{\left(\kappa_{2}(A)\right)^{2} \tan (\theta)}{\eta}$ and $\frac{\kappa_{2}(A)}{\eta \cos \theta}$.

For Part (c) and (d), you can use numerical answers.

