Drawing with Code

The drawings shown here were created with Processing, an open-source software application. The designs are built from a binary tree, a basic data structure in which each node spawns at most two offspring. Binary trees are used to organize information hierarchies, and they often take a graphical form. The density of the final drawing depends on the angle between the "children" and the number of generations.

The larger design is created by repeating, rotating, inverting, connecting, and overlapping the tree forms. In code-based drawing, the designer varies the results by changing the inputs to the algorithm.

Binary Tree

The drawing becomes denser with each generation. The last number in the code indicates the number of iterations. Yeohyun Ahn, MFA Studio.
Bézier Curves
A Bézier curve is a line defined by a set of anchor and control points. Designers are accustomed to drawing curves using vector-based software and then modifying the curve by adding, subtracting, and repositioning the anchor and control points. The drawings shown here were created with the open-source software application Processing. The curves were drawn directly in code:
```
bezier(x1, y1, x2, y2, x3, y3, x4, y4);
```

The first two parameters (x1, y1) specify the first anchor point, and the last two parameters (x4, y4) specify the other anchor point. The middle parameters locate the control points that define the curve. Curves drawn with standard illustration software are fundamentally the same as curves drawn in code, but we understand and control them with different means. The designer varies the results by changing the inputs to the algorithm.

Repeated Bézier Curve The designer has written a function that repeats the curve in space according to a given increment (b). The same basic code was used to generate all the drawings shown above, with varied inputs for the anchor and control points. A variable (i) defines the curve. Yeohyun Ahn, MFA Studio.

Black Flower A Bézier vertex is a shape created by closing a Bézier curve. This design was created by rotating numerous Bézier vertices around a common center, with varying degrees of transparency. Yeohyun Ahn, MFA Studio.
Rhythm and Balance

I pay close attention to the variety of shapes and sizes, and place the objects so that the lines and edges create a rhythm that guides the viewer's eye around the image and into the focal point.

Serge Fokinowski

Balance is a fundamental human condition: we require physical balance to stand upright and walk; we seek balance among the many facets of our personal and professional lives; the world struggles for balance of power. Indeed, balance is a prized commodity in our culture, and it is no surprise that our implicit, intuitive relationship with it has equipped us to sense balance—or imbalance—in the things we see, hear, smell, taste, and touch.

In design, balance acts as a catalyst for form—it anchors and activates elements in space. Do you ever notice your eye getting stuck in a particular place when looking at an unresolved design? This discord usually occurs because the proportion and placement of elements in relation to each other and to the negative space is off—too big, too tight, too flat, misaligned, and so on.

Relationships among elements on the page remind us of physical relationships. Visual balance occurs when the weight of one or more things is distributed evenly or proportionately in space. Like arranging furniture in a room, we move components around until the balance of form and space feels just right. Large objects are a counterpoint to smaller ones; dark objects to lighter ones.

A symmetrical design, which has the same elements on at least two sides along a common axis, is inherently stable. Yet balance need not be static. A tightrope walker achieves balance while traversing a precarious line in space, continually shifting her weight while staying in constant motion. Designers employ contrasting size, texture, value, color, and shape to offset or emphasize the weight of an object and achieve the acrobat’s dynamic sense of balance. Rhythm is a strong, regular, repeated pattern: the beating of drums, the patter of rain, the falling of footsteps. Speech, music, and dance all employ rhythm to express form over time. Graphic designers use rhythm in the construction of static images as well as in books, magazines, and motion graphics that have duration and sequence.

Although pattern design usually employs unbroken repetition, most forms of graphic design seek rhythms that are punctuated with change and variation. Book design, for example, seeks out a variety of scales and tonal values across its pages, while also preserving an underlying structural unity.

Balance and rhythm work together to create works of design that pulse with life, achieving both stability and surprise.
Symmetry and Asymmetry

Symmetry can be left to right, top to bottom, or both. Many natural organisms have a symmetrical form. The even weighting of arms and legs helps insure a creature's safe mobility; a tree develops an even distribution of weight around its core to stand erect; and the arms of a starfish radiate from the center.

Symmetry is not the only way to achieve balance, however. Asymmetrical designs are generally more active than symmetrical ones, and designers achieve balance by placing contrasting elements in counterpoint to each other, yielding compositions that allow the eye to wander while achieving an overall stability.

Symmetry The studies above demonstrate basic symmetrical balance. Elements are oriented along a common axis; the image mirrors from side to side along that axis. The configurations shown here are symmetrical from left to right and/or from top to bottom.

Asymmetry These studies use asymmetry to achieve compositional balance. Elements are placed organically, relying on the interaction of form and negative space and the proximity of elements to each other and to the edges of the field, yielding both tension and balance.

Symmetry and Asymmetry The designer has cropped a symmetrical form in order to create an asymmetrical composition. A rhythm of tapered elements undulates across the surface. The larger ornamental form has been shifted dramatically off center, yielding dynamic balance. Jeremy Brits, NPA Studio.
Repetition and Change
From the flowing contours of a farmer's fields to a sea of cars tucked into the lined compartments of a parking lot, repetition is an endless feature of the human environment. Like melodic consonance and fervent discord in music, repetition and change awaken life's visual juxtapositions. Beauty arises from the mix.

Slipping Containers, Norfolk, Virginia

Contour Farming, Meyersville, Maryland

Arlington National Cemetery, Washington, D.C.

Observed Rhythm Aerial photographs are fascinating and surprising because we are not accustomed to seeing landscapes from above. The many patterns, textures, and colors embedded in both man-made and natural forms—revealed and concealed through light and shadow—yield intriguing rhythms. Cameron Davidson.
Rhythm and Time

We are familiar with rhythm from the world of sound. In music, an underlying pattern changes in time. Layers of pattern occur simultaneously in music, supporting each other and providing aural contrast. In audio mixing, sounds are amplified or diminished to create a rhythm that shifts and evolves over the course of a piece.

Graphic designers employ similar structures visually. The repetition of elements such as circles, lines, and grids creates rhythm, while varying their size or intensity generates surprise. In animation, designers must orchestrate both audio and visual rhythms simultaneously.

Frozen Rhythms

Long-exposure photography records physical movements in time on a two-dimensional surface. Sketching with light yields a rhythmic line of changing intensity. Jason Okutake, MFA Studio.

Patterns Dissonance

Letterforms with abruptly shifting features are built around a thin skeleton. The orange anatomy of the letters flies against the cool tones, gentle rhythms of the old-fashioned wallpaper behind them. Jermy Bollis, MFA Studio.
Rhythm and Pacing
Designers often work with content distributed across many pages. As in a single-page composition, a sequential design must possess an overall coherence. Imagery, typography, rules, color fields, and so on are placed with mindful intention to create focal points and to carry the viewer's eye through the piece. An underlying grid helps bring order to a progression of pages. Keeping an element of surprise and variation is key to sustaining interest.

Roman Empire

...more than a localization of the German allied with Roman Emperor... Albert the Great of Habsburg and many emperors, and next several centuries, Habsburg line rose to Holy Roman Empire. Its decline in 19th... divisions between states under church were change. Reformation began with Luther's 95 theses, and to a head in 1546, a Charles V states of the Protestant League at Mühlberg, Counter-Reformation followed. A dispute on the succession to German throne broke in Thirty Years War.

Found Rhythms in this project, designers felt a 2.8-inch square clearly through a magazine, yielding dozens of unexpected compositions. Each designer used ten of those small squares as imagery in an accordion book. The squares were scanned at 200% and placed into a page layout file (formatted in 6-inch-square pages) and printed with a text gathered from Wikipedia.
Miss Darcy was tall, and on a larger scale than Elizabeth; and, though little more than sixteen, her figure was formed, and her appearance womanly and graceful, Jane Austen.

A printed piece can be as small as a postage stamp or as large as a billboard. A logo must be legible both at a tiny size and from a great distance, while a film might be viewed in a huge stadium or on a handheld device. Some projects are designed to be reproduced at multiple scales, while others are conceived for a single site or medium. No matter what size your work will ultimately be, it must have its own sense of scale.

What do designers mean by scale? Scale can be considered both objectively and subjectively. In objective terms, scale refers to the literal dimensions of a physical object or to the literal correlation between a representation and the real thing it depicts. Printed maps have an exact scale: an increment of measure on the page represents an increment in the physical world. Scale models re-create relationships found in full-scale objects. Thus a model car closely approximates the features of a working vehicle, while a toy car plays with size relationships, inflating some elements while diminishing others.

Subjectively, scale refers to one’s impression of an object’s size. A book or a room, for example, might have a grand or intimate scale, reflecting how it relates to our own bodies and to our knowledge of other books and other rooms. We say that an image or representation “lacks scale” when it has no cues that connect it to lived experience, giving it a physical identity. A design whose elements all have a similar size often feels dull and static, lacking contrast in scale.

Scale can depend on context. An ordinary piece of paper can contain lettering or images that seem to burst off its edges, conveying a surprising sense of scale. Likewise, a small isolated element can punctuate a large surface, drawing importance from the vast space surrounding it. Designers are often unpleasantly surprised when they first print out a piece that they have been designing on screen; elements that looked vibrant and dynamic on screen may appear dull and fadecol on the page. For example, 12pt type generally appears legible and appropriately scaled when viewed on a computer monitor, but the same type can feel crude and unwieldy as printed text. Developing sensitivity to scale is an ongoing process for every designer.
Scale is Relative
A graphic element can appear larger or smaller depending on the size, placement, and color of the elements around it. When elements are all the same size, the design feels flat. Contrast in size can create a sense of tension as well as a feeling of depth and movement. Small shapes tend to recede; large ones move forward.

Familiar Objects, Familiar Scale
We expect some objects to be a particular scale in relation to other objects. Playing with that scale can create spatial illusions and conceptual relationships. Gregory May, MFA Studio.

Crop to Emphasize Scale
The large circular form seems especially big because it bleeds off the edge of the page.

Scale, Depth, and Motion
In the typographic compositions shown here, designers worked with one word or a pair of words and used changes in scale aligned as placement on the page to convey the meaning of the word or word pair. Contrasts in scale can imply motion or depth as well as express differences in importance.
Back to the Bauhaus

Ellen Lupton

The idea of searching out a shared framework in which to invent and organize visual content dates back to the origins of modern graphic design. In the 1920s, institutions such as the Bauhaus in Germany explored design as a universal, perceptually based "language of vision," a concept that continues to shape design education today around the world. This book reflects on that vital tradition in light of profound shifts in technology and global social life. Whereas the Bauhaus promoted rational solutions through planning and standardization, designers and artists today are drawn to DIY approaches, customization, and sudden accidents as well as to standards and norms. The modernist preference for reduced, simplified forms now coexists with a desire to build systems that yield unexpected results. Today, the impure, the contaminated, and the hybrid hold as much allure as forms that are sleek and perfected. Visual thinkers often seek to spin out intricate results from simple rules or concepts rather than reduce an image or idea to its simplest parts.

The Bauhaus Legacy In the 1920s, faculty at the Bauhaus and other schools analyzed form in terms of basic geometric elements. They believed this language would be understandable to everyone, grounded in the universal instrument of the eye. Bauhaus faculty pursued this idea from different points of view. Wassily Kandinsky called for the creation of a "dictionary of elements" and a universal visual "grammar" in his Bauhaus textbook Point and Line to Plane. His colleague Laszlo Moholy-Nagy sought to uncover a rational vocabulary retold by a shared society and a common humanity. Courtes people by Josef Albers emphasized a systematic viewing of personal intuition, objectivity over emotion. Albers and Moholy-Nagy forged the use of new media and new materials. They saw that art and design were being transformed by technology—photography, film, and mass production. And yet their ideas remained profoundly humanistic, always asserting the role of the individual over the absolute authority of any system or method. Design, they argued, is never reducible to its function or to a technical description.

Since the 1940s, numerous educators have refined and expanded on the Bauhaus approach, from Moholy-Nagy and Georgy Kepez at the New Bauhaus in Chicago; to Johannes Itten, Max Bill, and Gun Bösise at the Ulm School in Germany; to Emil Ruder and Armin Hofmann in Switzerland; and to the "new typographies" of Wolfgang Weingart, Dan Friedman, and Katharina McCoy in Switzerland and the United States. Each of these revolutionary educators articulated structural approaches to design from distinct and original perspectives. Some of them also engaged in the postmodern rejection of universal communication. According to postmodernism, which emerged in the 1960s, it is futile to look for inherent meaning in an image or object because people will bring their own cultural biases and personal experiences to the process of interpretation. As postmodernism itself became a dominant ideology in the 1980s and '90s, both in the academy and in the marketplace, the design process got mired in the act of referencing cultural styles or tailoring messages to narrowly defined communities.

The New Basics Designers at the Bauhaus believed not only in a universal way of describing visual form, but also in its existential significance. Reacting against that belief, postmodernism discredited formal expression as a primary component of thinking and making in the visual arts. Formal study was considered to be tainted by its links to universalist ideologies. This book recognizes a difference between description and interpretation, between a potentially universal language of making and the universality of meaning. Today, software designers have realized the Bauhaus goal of describing (but not interpreting) the language of vision (or universal way). Software organizes visual material intomenus of properties, parameters, filters, and so on, creating tools that are universal in their social ubiquity, cross-disciplinarity, and descriptive power. Photoshop, for example, is a systematic study of the features of an image (its contrast, size, color model, and so on). InDesign and QuarkXPress are structural explorations of typography; they are software machines for controlling leading, alignment, spacing, and column structures as well as image placement and page layout.

In the aftermath of the Bauhaus, textbooks of basic design have returned again and again to elements such as point, line, plane, texture, and color, organized by principles of scale, contrast, movement, rhythm, and balance. This book revisits those concepts as well as looking at some of the new universals emerging today.

What are these emerging universals? What is new in basic design? Consider, for example, transparency—a concept explored in this book. Transparency is a condition in which two or more surfaces or substances are visible through each other. We constantly experience transparency in the physical environment: from water, glass, and smoke to venetian blinds, slatted fences, and perforated screens. Graphic designers, long the modern period have worked with transparency, but never more so than today, when transparency can be instantly manipulated with commonly used tools. What does transparency mean? Transparency can be used to construct thematic relationships. For example, compressing two pictures into a single space can suggest a conflict or synthesis of ideas (East/West, male/female, old/new). Designers also employ transparency as a compositional (rather than thematic) device, using it to soften edges, establish emphasis, separate competing elements, and so on. Transparency is crucial to the vocabulary of film and motion-based media. In place of a straight out, an animator or editor diminishes the opacity of an image over time (fades to black) or mixes two semitransparent images (cross dissolves). Such transitions affect a film's rhythm and style. They also modulate, in subtle ways, the meaning and context of images. Although viewers rarely stop to interpret these transitions, a video editor or animator understands them as part of the basic language of moving images.

Layering is another universal concept with rising importance. Physical printing processes use layers (ink on paper), and so do software interfaces (framed layers Photoshop files to sound or motion timelines). Transparency and layering have always been at play in the graphic arts. In today's context, what makes them new again is their omnipresent accessibility through software. Powerful digital tools are commonly available to professional artists and designers but also to children, amateurs, and tinkers of every stripe. Their language has become universal and general.

Software tools provide models of visual media, but they don't tell us what to make or what to say. It is the designer's task to produce the loci of works that are relevant to living situations (audience, context, program, brief, site) and to deliver meaningful messages and rich, embodied experiences. Each producer animates design's core structures in his or her own place in the world.
MOBILE

MINDED

Big Type, Small Pages In this book: designed
by Micka Gernot, the small trim size of the
page contrasts with the large scale type.
The surprising size of the text gives the
book its loud and visual voice. The cover
is reproduced here at actual size (1:1 scale).
Micka Gernot and Goat Levine, Mobile
Minded, 2002.

PERSONALSPACE
JUNKSPACE
VIRTUALSPACE
CELLSPACE
VISUALSPACE
FREESPACE
PUBLICSPACE
NETWORKSPACE
SOCIALSPACE
COMMUNALSPACE
WORKSPACE
CYBERSPACE
SMARTSPACE
AUGMENTEDSPACE

SAY GOODBYE,
VIRTUAL SPACE.
PREPARE TO LIVE IN
AUGMENTED SPACE.

THE 1990'S WERE ABOUT THE VIRTUAL:
VIRTUAL REALITY
VIRTUAL WORLDS
CYBERSPACE
AND DOT COMS

The image of an escape into a virtual world, which would leave the phys-
ic space that automatically constituted the world, was a key feature of the
90's. It was the beginning of a new era in computer technology. With the
introduction of virtual reality glasses, people could experience immersive
environments with toes in their cyberspace or on dot coms when they were
in their identity and virtual reality.

WHERE MEN TEND TO VIEW CELLPHONES AS TOYS;
WOMEN TEND TO VIEW THEM LIKE ACCESSORIES.

SEND SMS
333772633
9996688777
6444663

WHERE I SAW THE LAST TIMES I HEARD FROM YOU AGAINST.
Ambiguous Scale: These portraits of toy action figures play with the viewer’s expectations about scale. Spatial cues reveal the actual scale of the figures, cropping out recognizable objects keeps the illusion alive.

Point of View: Photographing small objects up close and from a low vantage point creates an illusion of monumentality.

Ken Bentley, MFA Studio. Abbott Miller, faculty.
Absence of Scale

This electrical utility building designed by NL Architects in Utrecht, Netherlands, has no windows or doors to indicate its scale relative to human beings or to familiar building types. The basketball hoop is the only clue to the size of this enigmatic structure. NL Architects, Netherlands, in cooperation with Bureau Kuijpers, Centraal UNA N.V., 1997–98.

Inflated Scale

In this design for an exhibition about the history of airways and aviation, a graphic icon is blown up to an enormous scale, becoming the backdrop for a screening area in the gallery. Abbott Miller and Jeremy Hoffman, Pentagram.

Environmental Typography

For an exhibition celebrating the history of Rolling Stone, the designers made showcases out of large-scale letterforms taken from the magazine's distinctive logotype. Abbott Miller and James Hicks, Pentagram.
Scale is a Verb

To scale a graphic element is to change its dimensions. Software makes it easy to scale photographs, vector graphics, and letterforms. Changing the scale of an element can transform its impact on the page or screen. Be careful, however: it's easy to distort an element by scaling it disproportionately.

Vector graphics are scalable, meaning that they can be enlarged or reduced without degrading the quality of the image. Bitmap images cannot be enlarged without resulting in a soft or jaggie image.

In two-dimensional animation, enlarging a graphic object over time can create the appearance of a zoom, as if the object were moving closer to the screen.

Correct Proportions Horizontal Scaling Vertical Scaling

Scaling Images and Objects Uneven scaling distorts images as well as typefaces. Imagine if you could scale a physical object, stretching or squashing it to make it fit into a particular space. The results are not pretty. Eric Karses

Scaling Letterforms If the horizontal and vertical dimensions of a letter are scaled unevenly, the resulting form looks distorted. With vertical scaling, the horizontal elements become too thick, while vertical elements get too skinny.

With horizontal scaling, vertical elements become disproportionately heavy, while horizontal elements get thin.

Full-Range Type Family Many typefaces include variations designed with different proportions. The Helvetica Nefar type family includes light, medium, bold, and black letters in normal, condensed, and extended widths. The strokes of each letter appear uniform; that effect is destroyed if the letters are unevenly scaled.

Extreme Heights In the poster at right for a lecture at a college, designer Paul Sahre put his typography under severe pressure, yielding virtually illegible results. He knew he had a captive audience. Paul Sahre.
If you touch something (it is likely) someone will feel it.
If you feel something (it is likely) someone will be touched.

Texture

Texture is the tactile grain of surfaces and substances. Textures in our environment help us understand the nature of things: rose bushes have sharp thorns to protect the delicate flowers they surround; smooth, paved roads signal safe passage; thick fog casts a veil on our view.

The textures of design elements similarly correspond to their visual function. An elegant, smoothly patterned surface might adorn the built interior or printed brochure of a day spa; a snuggle of barbed wire could stand as a metaphor for violence or incarceration.

In design, texture is both physical and virtual. Textures include the literal surface employed in the making of a printed piece or physical object as well as the optical appearance of that surface. Paper can be rough or smooth, fabric can be nubby or fine, and packaging material can be glossy or matte. Physical textures affect how a piece feels to the hand, but they also affect how it looks. A smooth or glossy surface, for example, reflects light differently than a soft or pebbly one.

Many of the textures that designers manipulate are not physically experienced by the viewer at all, but exist as optical effect and representation. Texture adds detail to an image, providing an overall surface quality as well as rewarding the eye when viewed up close.

Whether setting type or depicting a tree, the designer uses texture to establish a mood, reinforce a point of view, or convey a sense of physical presence. A body of text set in Garamond italic will have a delicately irregular appearance, while a text set in Univers roman will appear optically smooth with even tonality. Likewise, a smoothly drawn vector illustration will have a different feel from an image taken with a camera or created with code.

As in life, the beauty of texture in design often lies in its poignant juxtaposition or contrast: prickly/soft, sticky/airy, fuzzy/smooth, and so on. By placing one texture in relation to its opposite, or a smart counterpart, the designer can amplify the unique formal properties of each one.

This chapter presents a wide spectrum of textures generated by hand, camera, computer, and code. They are abstract and concrete, and they have been captured, configured, sliced, built, and brushed. They were chosen to remind us that texture has a genuine, visceral, wholly seductive capacity to reel us in and hold us.
Concrete Texture
The physical quality resulting from repeated slicing, burning, marking, and extracting creates concrete textural surfaces with robust appeal. The studies to the right grew out of a studio exercise where the computer was prohibited in the initial stages of concept and formal development. Turbulences (below), an alphabet by Rick Valicenti, similarly evokes a raw physicality. The alphabet began with vigorous hand-drawn, looping scribbles that were then translated into code.

Surface Manipulation: The textural physicality of these type studies artfully reflects the active processes featured in the words. The crisscrossing lines of an artist’s cutting board resemble an urban street grid. Jannie Hallman, Graphic Design I, Bernard Carville, faculty.
Physical and Virtual Texture

This exercise builds connections between physical and virtual texture (the feel and look of surfaces). Designers used digital cameras to capture compelling textures from the environment. Next, they wrote descriptive paragraphs about each of the textures, focusing on their images’ formal characteristics.

Using these descriptive texts as context, the designers re-created the textures typographically in Adobe Illustrator, employing repetition, scale, layers, and color. Typeface selection was open, but scale distortion was not permitted.

Graphic Design I, Mike Wellkot, faculty.

Hayley Griffin

Gray Haas

Jeaneo Chang

Tim Mason
Topographic Landscape Aerial photograph of harvested wheat fields shows instead traces of the process through many indeed, lumping of and overlapping lines. Cameron Davidson.

Typographic Landscape Curving lines of text serve to build up a typographic surface, creating the illusion of a topographic landscape. Viskbjörn, MFA Studio.
Code-Driven Texture: The Swiss typographer Emil Rudolf Spiller claimed that vital and individual typographic rhythms are alien to machines. The code-driven letterforms shown here prove otherwise. Generated in the computer language Processing, these forms are effervescent, organic, and, indeed, vital. Vaheh Yamin, GPA Studio.

All About the Money: The textured letters in this editorial illustration are rendered in 3D imaging software. The rhinestone-studded text is set against a Tiffany blue sky, providing what designer Rick Valicenti calls “a suburban white male’s version of the pixel pusher’s gangsta aesthetic.” Designer: Rick Valicenti. Thinl: Programmer: Matt Dalay, Laberista.
Textual Harmony and Contrast

Surface details can have harmonic or contrasting characteristics, yielding distinct visual effects. Some textures have a high degree of contrast and are built from relatively large elements; others are low contrast and have a fine, delicate grain. A rubbery, baggy condom contrasts with the soft, bruised skin of a banana. Letterforms can be made with sweeping, goopy brush forms or with crisp strips of paper, each technique imbuing the page with a particular physical quality.

Satoru Nishii

Alphabetic Texture These alphabets are from a diverse collection created for Rick Valeur's Playground exhibition, where letters are constructed from physical objects and processes. Designers top to bottom: Michelle Bourae, Rick Valeur, Jean Doughter.
Even the most robust visual language is useless without the ability to engage it in a living context. While this book centers around formal structure and experiment, some opening thoughts on process and problem solving are appropriate here, as we hope readers will reach not only for more accomplished form, but for form that resonates with fresh meaning.

Before the Macintosh, solving graphic design problems meant outsourcing at nearly every stage of the way: manuscripts were sent to a typesetter; photographs—selected from contact sheets—were printed at a lab and corrected by a retoucher; and finished artwork was the job of a paste-up artist, who sliced and cemented type and images onto boards. This protocol slowed down the work process and required designers to plan each step methodically.

By contrast, powerful, off-the-shelf software now allows designers and users of all ilk to endlessly edit their work in the comfort of a personal or professional workspace.

Yet, as these digital technologies afford greater freedom and convenience, they also require ongoing education and upkeep. This recurring learning curve, added to already overloaded schedules, often cuts short the creative window for concept development and formal experimentation.

In the college context, students arrive more digitally facile. Acculturated by iPods, Playstations, and PowerBooks, design students command the technical savvy that used to take years to build. Being plugged in, however, has not always profited creative thinking.

Too often, the temptation to turn directly to the computer precludes deeper levels of research and ideation—the distillation zone that unfolds beyond the average appetizer for testing the waters and exploring alternatives. People, places, thoughts, and things become familiar through repeated exposure. It stands to reason, then, that initial ideas and, typically, the top tiers of a Google search turn up only cursory results that are often tired andtrite.

Getting to more interesting territory requires the perseverance to sift, sort, and assimilate subjects and solutions until a fresh spark emerges and takes hold.

Visual Thinking Ubiquitous access to image editing and design software, together with zealous media incultation on all things design, has created a tidal wave of design makers outside our profession. Indeed, in our previous book, _D.V.: Design By Yourself_, we extolled the virtues of learning and making, arguing that people acquire pleasure, knowledge, and power by engaging with design at all levels.

With this volume we shift the climate of the conversation. Instead of slimming the surface, we dig deeper. Rather than issuing instructions, we frame problems and suggest possibilities. Inside, you will find many examples, by students and professionals, that balance and blend idiosyncrasy with formal discipline.

Rather than focus on practical problems such as how to design a book, brochure, logo, or website, this book encourages readers to experiment with the visual language of design. By "experiment," we mean the process of examining a form, material, or process in a methodical yet open-ended way. To experiment is to isolate elements of an operation, limiting some variables in order to better study others. An experiment asks a question or tests a hypothesis whose answer is not known in advance.

Choose your corner, pick away at it carefully, intensely and to the best of your ability and that way you might change the world. Charles Eames

The book is organized around some of the formal elements and phenomena of design, those components mix and overlap, as they do in the examples shown throughout the book. By focusing attention on particular aspects of visual form, we encourage readers to recognize the forces at play behind strong graphic solutions. Likewise, while a dictionary studies specific words in isolation, those words come alive in the active context of writing and speaking.

Filtered through formal and conceptual experimentation, design thinking fuses a shared discipline with organic interpretation.

Diagramming Process Charles Eames drew this diagram to explain the design process as achieving a point where the needs and interests of the client, the designer, and society as a whole overlap. Charles Eames, 1969, for the exhibition "What is Design" at the Musée des Arts Décoratifs, Paris, France. © 2007 Eames Office LLC.
swarm

Textured Logotypes The logotypes shown here, designed by Pentagram, use textured surfaces to convey ideas of movement and change. In a logo for an exhibition about the idea of “swarming” in contemporary art, thousands of tiny elements flock together to create a larger structure. In Pentagram’s visual identity for MICA, patterning provides a rich patina that resonates with the school’s urban neighborhood. The main typographic mark gracefully balances tradition and innovation. Solid historical letterforms are punctuated by a modern linear framework, referencing the two architecturally significant buildings that anchor the campus—one building is classical and cubic, while the other is dramatically angled. The texture makes the logo light and engaging when it is used at a large scale.

Abbott Miller and Kristen Spilman, Pentagram

Textural Applications The MICA mark and pattern breathe life into a cardboard portfolio. The same pattern appears on works of street couture. Abbott Miller and Kristen Spilman, Pentagram. Photography: Nancy Fischl.
Five Squares Ten Inches All typefaces have an innate optical texture that results from the accumulation of attributes such as spirets, slope, stroke width, and proportion. These attributes interest on the page with the size, tracking, leading, and paragraph style selected by the designer, yielding an overall texture.

In this exercise, designers composed five justified squares of type inside a ten-inch frame. Variation of type style, texture, and value were achieved by combining contrasting characteristics such as old style italic serifs, uniformly weighted sans serifs, geometric slab serifs, and so on. Light to dark value (hyphographic color) was controlled through the combination of stroke width, word spacing, and paragraph leading.

Finally, students manipulated the scale and placement of the squares to achieve compositional balance, tension, and depth. Squares were permitted to bleed off the page, reinforcing the illusion of amplification and recession. Typography: Jennifer Cole, Phillips, family.
Using Texture to Create Emphasis
A field of individual marks becomes a texture when the overall surface pattern becomes more important than any single mark. A texture generally serves as ground, not as figure, serving a supporting role to a primary image or form. This role is not passive, however. Used well (as shown here), the background texture supports the main image and furthers the visual concept. Used poorly, texture distracts and confuses the eye, adding unwelcome noise to a composition.

Conveying a Mood A texture can be generated in response to a central image (opposite or in opposition to it) (center).
Kelley McIntyre and Kim Bentley, MFA Studio. Martin Benjamins, visiting faculty.
Color can convey a mood, describe reality, or codify information. Words like “gloomy,” “drab,” and “glittering” each bring to mind a general climate of colors, a palette of relationships. Designers use color to make some things stand out (warning signs) and to make other things disappear (camouflage). Color serves to differentiate and connect, to highlight and to hide. Graphic design was once seen as a fundamentally black-and-white enterprise. This is no longer the case. Color has become integral to the design process. Color printing, once a luxury, has become routine. An infinite range of hues and intensities bring modern media to life, energizing the page, the screen, and the built environment with sensuality and significance. Graphics and color have converged.

According to the classical tradition, the essence of design lies in linear structures and tonal relationships (drawing and shading), not in fleeting optical effects (hue, intensity, luminosity). Design used to be understood as an abstract armature that underlies appearances. Color, in contrast, was seen as subjective and unstable. And, indeed, it is. Color exists, literally, in the eye of the beholder. We cannot perceive color until light bounces off an object or is emitted from a source and enters the eye.

Our perception of color depends not solely on the pigmentation of physical surfaces, but also on the brightness and character of ambient light. We also perceive a given color in relation to the other colors around it. For example, a light tone looks lighter against a dark ground than against a pale one.

Likewise, color changes meaning from culture to culture. Colors carry different connotations in different societies. White signals virginity and purity in the West, but it is the color of death in Eastern cultures. Red, worn by brides in Japan, is considered racy and erotic in Europe and the United States. Colors go in and out of fashion, and an entire industry has emerged to guide and predict its course.

Color. Our perception of color depends not solely on the pigmentation of physical surfaces, but also on the brightness and character of ambient light. We also perceive a given color in relation to the other colors around it. For example, a light tone looks lighter against a dark ground than against a pale one. Likewise, color changes meaning from culture to culture. Colors carry different connotations in different societies. White signals virginity and purity in the West, but it is the color of death in Eastern cultures. Red, worn by brides in Japan, is considered racy and erotic in Europe and the United States. Colors go in and out of fashion, and an entire industry has emerged to guide and predict its course.

To say, however, that color is a shifting phenomenon—both physically and culturally—is not to say that it can’t be described or understood. A precise vocabulary has been established over time that makes it possible for designers, software systems, printers, and manufacturers to communicate to one another with some degree of clarity. This chapter outlines the basic terms of color theory and shows ways to build purposeful relationships among colors.
Basic Color Theory
In 1666 Sir Isaac Newton discovered that a prism separates light into the spectrum of colors: red, orange, yellow, green, blue, indigo, and violet. He organized the colors around a wheel very much like the one artists use today to describe the relationships among colors. 1

Why is the color wheel a useful design tool? Colors that sit near each other on the spectrum or close together on the color wheel are analogous. Using them together provides minimal color contrast and an innate harmony, because each color has some element in common with others in the sequence. Analogous colors also have a related color temperature. Two colors sitting opposite each other on the wheel are complements. Each color contains no element of the other; and they have opposing temperatures (warm versus cool). Deciding to use analogous or contrasting colors affects the visual energy and mood of any composition.

Complementary and Analogous Colors
This diagram shows combinations of primary, secondary, and tertiary colors. Robert Lewis, MFA Studio.

Hue is the place of the color within the spectrum. A red hue can look brown at low saturation, or pink at a pale value.

Intensity is the brightness or dullness of a color. A color is made duller by adding black or white, as well as by neutralizing it toward gray (lowering its saturation).

Value is the light or dark character of the color, also called its luminance, brightness, lightness, or tone. Value is independent of the hue or intensity of the color. When you convert a color image to black and white, you eliminate its hue but preserve its tonal relationships.

Aspects of Color
Every color can be described in relation to a range of attributes. Understanding these characteristics can help you make color choices and build color combinations. Using colors with contrasting values tends to bring forms into sharp focus, while combining colors that are close in value softens the distinction between elements.

Shade is a variation of a hue produced by the addition of black.

Tint is a variation of a hue produced by the addition of white.

Saturation (also called chroma) is the relative purity of the color as it neutralizes to gray.

These colors are close in value and intensity, and just slightly different in hue.

These colors are close in hue and value but different in intensity.

Graduated Color Wheel Each hue on the color wheel is shown here in a progressive series of values (shades and tints). Note that the point of greatest saturation is not the same for each hue. Yellow is of greatest intensity toward the lighter end of the value scale, while blue is more intense in the darker zone.

Use the graduated color wheel to look for combinations of colors that are similar in value or saturation, or use it to build contrasting relationships. Robert Lewis, MFA Studio.
Color Models
Surfaces absorb certain light waves and reflect back others onto the color receptors (cones) in our eyes. The light reflected back is the light we see. The true primaries of visible light are red, green, and blue. The light system is called "additive" because the three primaries together create all the hues in the spectrum.

In theory, combining red and green paint should produce yellow. In practice, however, these pigments combine into a blackish brown. This is because pigments absorb more light than they reflect, making any mix of pigments darker than its source colors. As more colors are mixed, less light is reflected. Thus pigment-based color systems are called "subtractive."

Offset and desktop printing methods use CMYK, a subtractive system. Nonstandard colors are used because light reflected off cyan and magenta pigments mixes more purely into new hues than the light reflected off blue and red pigments.

CMYK is used in the printing process. While painters use the basic color wheel as a guide for mixing paint, printing uses a different set of colors: cyan, magenta, yellow, and black, which are ideal for reproducing the range of colors found in color photographs. C, M, Y, and K are known as the "process colors," and full-color printing is called "four-color process." Ink jet and color laser printers use CMYK, as does the commercial offset printing equipment used to print books such as this one.

In principle, C, M, and Y should produce black, but the resulting mix is not rich enough to reproduce color images with a full-range range. Thus black is needed to complete the four-color process.

RGB is the additive system used for designing on screen. Different percentages of red, green, and blue light combine to generate the colors of the spectrum. White occurs when all three colors are at full strength. Black occurs when zero light (and thus zero color) is emitted.

Any given color can be described with both CMYK and RGB values, as well as with other color models. Each model (called a "color space") uses numbers to convey color information uniformly around the globe and across media. Different monitors, printing conditions, and paper stocks all affect the appearance of the final color, as does the light in the environment where the color is viewed. Colors look different under fluorescent, incandescent, and natural light. Colors rarely translate perfectly from one space to another.

Transparent Ink: Printer’s inks are transparent, so color mixing occurs as colors show through each other. Color mixing is also performed optically when the image is broken down into tiny dots of varying size. The resulting colors are mixed by the eye.

Transparent Light: The medium of light is also transparent. The colors of an emitted image are generated when different colors of light mix directly, as well as when tiny adjacent pixels combine optically.

Optical Color Mixing: This detail from a printed paper billboard shows the principle of four-color process printing (CMYK). Viewed from a distance, the flakes of color mix together optically. Seen up close, the pattern of dots is strongly evident.

Whatever color model your software is using, if you are viewing it on screen, it is RGB. If you are viewing it in print, it is CMYK.
One Color, Different Effects: The neutral tone passing through these three squares of color is the same in each instance. It takes on a slightly different hue or value depending on its context.

Interaction of Color
Josef Albers, a painter and designer who worked at the Bauhaus before emigrating to the United States, studied color in a rigorous manner that influenced generations of artists and educators. Giving his students preprinted sheets of colored paper with which to work, he led them to analyze and experience how the perception of color changes in relation to how any given color is juxtaposed with others.

Colors are mixed in the eye as well as directly on the painter’s palette or the printing press. This fact affects how designers create patterns and textures, and it is exploited in digital and mechanical printing methods, which use small flecks of pure hue to build up countless color variations.

Designers juxtapose colors to create specific climates and qualities, using one color to diminish or intensify another. Understanding how colors interact helps designers control the power of color and systematically test variations of an idea.

Vibration and Value: When two colors are very close in value, a glowing effect occurs; on the left, the green appears luminous and unstable. With a strong value difference, as seen on the right, the green appears darker.

Color + White

Color + Black

Color + Gray

Complements

Near Complements

Analogous Colors
Neutral earth tones combine to make a quiet overall pattern, while a palette with strong contrasts of value and hue yields a more linear effect.

By changing the colors of background and foreground elements, completely new forms appear and disappear.

Colors close in value but different in hue create a vibrant yet soft effect. The effect becomes even softer when analogous colors are used.

Experiments with hue, value, and saturation, as well as with analogous, complementary, and near complementary color juxtapositions, affect the way the patterns feel and behave. Through selective emphasis, some elements pull forward and others recede. Typography I Jennifer Cole Philips, faculty.

The similarly muted hues of olive and brown sit back, allowing a pale yellow pattern to come forward. Next, gradations of yellow, orange, and red weave through a green background of equivalent value, leading the dark blue shapes to command attention.

In the first color study above, the complementary orange and blue squares vibrate against each other, while the analogous yellow and green play a more passive role. In the second study, the dark blue and burgundy tones frame and push forward the brighter blues in the center.

The muted neutral hues allow the forms to gently commingle, while contrasting hues and values break the elements apart.
Passion, Palettes, and Products: What began as a love for Portuguese tile patterns on a trip to Lisbon evolved into an intensive investigation into pattern, form, and color, manifesting itself in her MFA thesis project and now an online business.

Textile designers often create numerous color ways for a single pattern, allowing the same printing plates or weaving templates to generate diverse patterns. Different color palettes make different elements of the patterns come forward or recede. Jessica Pizer, MFA Studio
A line is the track made by the moving point... It is created by movement—specifically through the destruction of the intense, self-contained repose of the point. Wassily Kandinsky

Point, line, and plane are the building blocks of design. From these elements, designers create images, icons, textures, patterns, diagrams, animations, and typographic systems. Indeed, every complex design shown in this book results at some level from the interaction of points, lines, and planes.

Diagrams build relationships among elements using points, lines, and planes to map and connect data. Textures and patterns are constructed from large groups of points and lines that repeat, rotate, and otherwise interact to form distinctive and engaging surfaces. Typographic consists of individual letters (points) that form into lines and fields of text.

For hundreds of years, printing processes have employed dots and lines to depict light, shadow, and volume. Different printing technologies support distinct kinds of mark making. To produce a woodcut, for example, the artist carves out material from a flat surface. In contrast to this subtractive process, lithography allows the artist to make positive, additive marks across a surface. In these processes, dots and lines accumulate to build larger planes and convey the illusion of volume.

Photography, invented in the early 1800s, captures reflected light automatically. The subtle tonal variations of photography eliminated the intermediary mesh of point and line. Yet reproducing the tones of a photographic image requires translating it into pure graphic marks, because nearly every mechanical printing method—from lithography to laser printing—works with solid lines. The halftone process, invented in the 1880s and still used today, converts a photograph into a pattern of larger and smaller dots, simulating tonal variation with pure spots of black or flat color. The same principle is used in digital reproduction.

Today, designers use software to capture the gestures of the hand as data that can be endlessly manipulated and refined. Software describes images in terms of point, line, plane, shape, and volume as well as color, transparency, and other features. There are numerous ways to experiment with these basic elements of two-dimensional design: observing the environment around you, making marks with physical and digital tools, using software to create and manipulate images, or writing code to generate form with rules and variables.
The form of an object is not more important than the form of the space surrounding it. All things exist in interaction with other things. In music, are the separations between notes less important than the notes themselves? Malcolm Grear

Figure/ground relationships shape visual perception. A figure (form) is always seen in relation to what surrounds it (ground, or background)—letters to a page, a building to its site, a sculpture to the space within it and around it, the subject of a photograph to its setting, and so on. A black shape on a black field is not visible; without separation and contrast, form disappears.

People are accustomed to seeing the background as passive and unimportant in relation to a dominant subject. Yet visual artists quickly become attuned to the spaces around and between elements, discovering their power to shape experience and become active forms in their own right.

Graphic designers often seek a balance between figure and ground, using this relationship to bring energy and order to form and space. They build contrasts between form and counterform in order to construct icons, illustrations, logos, compositions, and patterns that stimulate the eye. Creating figure/ground tension or ambiguity adds visual energy to an image or mark. Even subtle ambiguity can invigorate the end result and shift its direction and impact.

Figure/ground, also known as positive and negative space, is at work in all facets of graphic design. In the design of logotypes and symbols, the distillation of complex meaning into simplified but significant form often thrives on the taut reciprocity of figure and ground. In posters, layouts, and screen designs, what is left out frames and balances what is built in. Similarly, in time-based media, including multipage books, the insertion and distribution of space across time affects perception and pacing.

The ability to create and evaluate effective figure/ground tension is an essential skill for graphic designers. Train your eye to carve out white space as you compose with forms. Learn to massage the positive and negative areas as you adjust the scale of images and typography. Look at the shapes each element makes and see if the edges frame a void that is equally appealing. Notice how as the value of a text block becomes darker, its shape becomes more defined when composed with other elements.

Recognizing the potency of the ground, designers strive to reveal its constructive necessity. Working with figure/ground relationships gives designers the power to create—and destroy—form.
Stable, Reversible, Ambiguous
A stable figure/ground relationship exists when a form or figure stands clearly apart from its background. Most photography functions according to this principle, where someone or something is featured within a setting. Reversible figure/ground occurs when positive and negative elements attract our attention equally and alternately, coming forward, then receding, as our eye perceives one first as dominant and next as subordinate. Reversible figure/ground motifs can be seen in the ceramics, weaving, and crafts of cultures around the globe.

Interwoven Space
Designers, illustrators, and photographers often play with figure/ground relationships to add interest and intrigue to their work. Unlike conventional depictions where subjects are centered and framed against a background, active figure/ground conditions churn and interweave form and space, creating tension and ambiguity.

Figure and Counterform
Sculptures in a landscape—depict space, creating an active interplay between the form and void around it. Here, the distorted shapes and taut tension pay homage to Henry Moore, with whom this artist studied in the 1930s. Reuben Kramer, 1937. Photographed by Don Meyers.

Figure Inside of Figure
This poster reveals its subject at second glance. One head takes form as the void inside the other. The tension between figure and ground acquires an ominous energy. Joanne Girak and Jerry Skawski, Homework.
Letterform Abstraction: In this introduction to letterform analysis, students examined the forms and counterforms of the alphabet in many font variations, eventually isolating just enough of each letter to hint at its identity. Each student sought to strike a balance between positive and negative space.

Optical Interplay: This mark for Vanderbilt University employs a strong contrast between rigid form and organic counterform. The elegant oak leaf alternates sinks back, allowing the letterform to read, and comes forward, conveying growth, strength, and beauty. Malcolm Grear, Malcolm Grear Designers.
Figure/Ground Negative

These marching arrows, positive and negative arrows, seem to move and break away from the pack. The dynamic use of scale, direction, rhythm, and color draws the viewer’s eye in and around the composition. Superforms take shape out of the crowd. Yong Seok Lee, N’W Studio.
Contrast and Composition. In this project, students explored principles of visual contrast, focusing on letterform details to illuminate unique anatomical and stylistic features. Each study focuses on one pair of contrasting letterforms, which the designer could juxtapose, combine, repeat, rotate, enlarge, and reduce. The final design celebrated formal differences as well as distributed positive and negative space into fluid, balanced compositions. Typography I.

Jennifer Cote Philippe, Faculty.

Zey Alkay
Anna Estehman
Hyundoo Lim

Lindsey Patrick
Elizabeth Tipton
Lindsey Patrick

Photo Letter Mesh: In this abstract study of type and texture, black and white letterforms are skillfully interwoven with granular, high-contrast imagery, creating an ambiguous foreground/ground condition.

Jeremy Botta, MFA Studio.
Artful Reduction: A minimal stack of carefully shaped forms, in concert with exacting intervals of space, instantly evokes this sculptural landmark. Malcolm Grear, Malcolm Grear Designers.
No Entry

Those crudely punched letters are readable against the sky and sea, whose contrasting value lights up the message.

Jayne Dolgen

Counter Hand

The simple device of cut-out white paper held against a contrasting ground defines the alphabet with quirky style and spatial growth. PWS Design.
Seeing Jesus: Simple stitches spell out a series of letters, which take form as the viewer’s eye allows the background to move forward. The light stitches become punctuation for the dark letters.

Needlepoin: Ralph Emerson French

Inspired by Jesus: The designer has interwoven the words “figure” and “ground” across each horizontal band. One word serves as the background or frame for the other, forcing the eye to shuttle between two conflicting readings. This complex study was inspired by the needlework at left. Jeremy Betti, MA Studio.
Framing

Frames are everywhere. A picture frame sets off a work of art from its surroundings, bringing attention to the work and lifting it apart from its setting. Shelves, pedestals, and vitrines provide stages for displaying objects. A saucer frames a teacup and a place mat outlines the piece of a table setting.

Modern designers often seek to eliminate frames. A minimalist interior avoids moldings around doors or woodwork where walls meet the floor, expanding edge-to-edge relationships. The full bleed photography of a sleek magazine layout eliminates the protective, formal zone of the white margin, allowing the image to explode off the page and into reality.

In politics, "framing" refers to explaining an issue in terms that will influence how people interpret it. The caption of a picture is a frame that guides its interpretation. A billboard is framed by a landscape, and a product is framed by a retail setting. Boundaries and frames mark the frames of private property. Cropping, borders, margins, and captions are key components of graphic design. Whether emphasized or erased, frames affect how we perceive information.

Framing creates the conditions for understanding an image or object. The philosopher Jacques Derrida defined framing as a structure that is both present and absent. The frame is subsequent to the content it surrounds, disappearing as we focus on the image or object on view. And yet the frame shapes our understanding of that content. Frames are part of the fundamental architecture of graphic design. Indeed, framing is one of the most persistent, unavoidable, and infinitely variable acts performed by the graphic designer.

An interface is a kind of frame. The buttons on a television set, the index of a book, or the tuckaway of a software application exist outside the central purpose of the product, yet they are essential to our understanding of it. A frame with no handle or a cell phone with no controls is useless.

Consider the ubiquity of interfaces in the design process. The physical box of the computer screen provides a constant frame for the act of designing, while the digital desktop is edged with controls and littered with icons. Numerous windows complete this collage. Each frame is an usable area of the design system, a well-defined set of rules. A well-designed interface is both visible and invisible, escaping attention when not needed while shifting into focus on demand. Once learned, interfaces disappear from view, becoming second nature.

Experimental design often exposes or dramatizes the interface: a page number or a field of white space might become a pronounced visual element, or a navigation panel might assume an unusual shape or position. By pushing the frames of the foreground, such acts provoke the discovery of new ideas. This chapter shows how the meaning and impact of an image or text changes depending on how it is bordered or cropped. Frames typically serve to contain an image, marking it off from its background in order to make it more visible. Framing can also penetrate the image, rendering it open and permeable rather than stable and contained. A frame can divide an image from its background, but it can also serve as a transition from inanimate to outside, figure to ground.
Camera Frames
The mechanical eye of the camera cuts up the field of vision in a way that the natural eye does not. Every time you snap a picture with a camera, you make a frame. In contrast, the eye is in constant motion, focusing and refocusing on diverse stimuli in the environment.

Framing and Reframing Here, the artist photographed pictures collected from the history and culture of his own family in environments that are endowed with both historic and contemporary detail. Jeremy Bells, MFA Studio, Comme-Biz, faculty.

Cropping
By cropping a photograph or illustration, the designer redraws its borders and alters its shape, changing the scale of its elements in relation to the overall picture. A vertical image can become a square, a circle, or a narrow ribbon, acquiring new proportions. By closing in on a detail, cropping can change the focus of a picture, giving it new meaning and emphasis. By cropping a picture, the designer can discover new images inside it. Experiment with cropping by laying two L-shaped pieces of paper over an image, or look at the picture through a window cut from a piece of paper. Working digitally, move an image around inside the picture frame in a page-layout program, changing its scale, position, and orientation.

New Frame, New Meaning The way an image is cropped can change its meaning completely. Yung Seok Lee, MFA Studio.
Point
A point marks a position in space. In pure geometric terms, a point is a pair of x, y coordinates. It has no mass at all. Graphically, however, a point takes form as a dot, a visible mark. A point can be an insignificant fleck of matter or a concentrated locus of power. It can penetrate like a bullet, pierce like a nail, or pucker like a kiss. Through its scale, position, and relationship to its surroundings, a point can express its own identity or melt into the crowd.

A series of points forms a line.
A mass of points becomes texture, shape, or plane. Tiny points of varying size create shades of gray.
The tip of an arrow points the way, just as the crossing of an X marks a spot.

In typography, the point is a period—the definitive end of a line. Each character in a field of text is a singular element, and thus a kind of point, a finite element in a series.

end of a line
Margins and Bleeds

Margins affect the way we perceive content by providing open spaces around texts and images. Wider margins can emphasize a picture or a field of text as an object, calling our attention to it. Narrower margins can make the content seem larger than life, bursting at its own seams.

Margins provide a protective frame around the contents of a publication. They also provide space for information such as page numbers and running heads. A deep margin can accommodate illustrations, captions, headings, and other information.

Bleeds

The picture above is reproduced at the same scale in each instance, but its intensity and impact change as it takes over more or less of the surrounding page.

Margin

A margin creates a protective zone around an image, presenting it as an object on a stage, a figure against a ground. Margins can be thick or thin, symmetrical or asymmetrical. A wider margin can add formality to the image it frames.

Full Bleed

An image “bleeds” when it runs off the edge of a page. The ground disappears, and the image seems larger and more active.

Partial Bleed

An image can bleed off one, two, or three sides. Here, the bottom margin provides a partial border, yet the photograph still has a larger-than-life quality.

Using Margins and Bleeds

Designed by COMA, this book about the Dutch product design duo Jongerius and Hessels uses margins, bleeds, rules, and other framing devices in distinctive ways. The photographs bleed off the left and right edges of each page, while the top and bottom margins are kept clear as open territory that sometimes includes text and additional pictures. Tightly spaced together, the pictures create a strong horizontal movement, like a strip of film marching through the center of the book. Countering this horizontal motion are gold boxes printed on top of the pictures. Whereas boxes traditionally serve to neatly enclose an area, these boxes are open at the top, and their shape doesn’t match the pictures underneath. The designers have thus used many of the standard components of book design in an unconventional way.

Using Images Typographically: How can an image be arranged, like type, into words, lines, columns, and guides? This exercise invited designers to think abstractly about both image and type. Each designer created a new visual "image" by mixing lines, shapes, and textures from a larger picture. Typography is experienced in terms of blocks of graphic tone and texture that are framed by the margins and gutters of the page. Different densities of texture suggest hierarchies of contrasting typefaces. Headlines, captions, quotations, lists, illustrations, and other material take shape in relation to bodies of running text. Advanced Design Workshop, York College. Ellen Lupton, visiting faculty.

The exercises on this spread incorporate a high-resolution scan of an original eighteenth-century engraving from Denis Diderot's Encyclopedie. Shown here is the full image.

Framing Text and Image: In this project, designers edited, framed, and cropped a picture in relation to a passage of text. The challenge was to mediate text as an equal player in the final composition, not as an annotation or footnote to the picture.

Designers approached the image abstractly as well as figuratively. Is the picture flat or three-dimensional? How does it look upside down? Designers edited the image by blocking out parts of it, changing the shape of the frame, or blowing up a detail.

Shannon Snyder
Jessica Alvarado
Millicia M. Rodgers
Lindsey Olson

Luke Williams
Jessica Neil

Jonnie Hallman
Lindsay Sherman

They found lines, shapes, and planes within the picture that suggested ways to position and align the text. The goal was to integrate the text with the image without being the text disposer. Typography I, Ellen Lupton, faculty.
Framing Image and Text

An image seen alone, without any words, is open to interpretation. Adding text to a picture changes its meaning. Written language becomes a frame for the image, shaping the viewer's understanding of it both through the content of the words and the style and placement of the typography. Likewise, pictures can change the meaning of a text.

Text and image combine in endless ways. Text can be subordinate or dominant to a picture; it can be large or small, inside or outside, opaque or transparent, legible or obscure. Text can respect or ignore the borders of an image.

From Caption to Headline When a large-scale word replaces an ordinary caption, the message changes. What is empty? The sky, the storm, or the larger social reality suggested by the landscape?

Text Over Image Putting type on top of a high-contrast image poses legibility conflicts. Boxes, bars, and transparent color fields are some of the ways designers deal with the problem of superimposing text over image.

The future belongs to crowds.

--Dan DeLillo

The future belongs to crowds.

--Dan DeLillo

Framing Image and Text Pages and covers from the Dutch magazine Frame, designed by COMA, combine images and text in diverse ways. The designers rarely use frames as a chosen box or border. Images as well as text are often cut or broken, bleeding off the edge, or slipping behind other elements. Cornelia Blatt and Marcel Heijmans, COMA.
Borders
A border is the frontier between inside and outside, marking the edge of a territory. A border naturally appears where an image ends and its background begins. While many images hold their own edges (a dark picture on a white background), a graphic border can help define an image that lacks an obvious edge (a white background on a white page). A graphic border can emphasize an outer boundary, or it can frame off a section inside an image. Some borders are simple lines; others are detailed and complex. Around the world and across history, people have created elaborate frames, rules, cartouches, and moldings to frame pictures and architectural elements.

Whether simple or decorative, a border creates a transition between image and background. Against the pale wall of a room, for example, a black picture frame sharply separates a work of art from its surroundings. Alternatively, a frame whose color is close to that of the wall blends the work of art with the room around it. Graphic designers make similar decisions when framing visual elements, sometimes seeking to meld them with their context, and sometimes seeking to set them sharply apart. A frame can serve to either emphasize or downplay its contents.

Marking Space
A frame can mark off a space with just a few points. Territory can be defined from the outside in (by crop marks for trimming a print), or from the inside out (an x drawn from the center of a space to its four corners).

Villa Borghese, Rome, 1615. The ornament on this Renaissance palazzo frames the windows, doors, and niches as well as delineates the building's principal volumes and divisions. Architect: Giovanni Vasanzio. Vintage photograph.
Design is the conscious effort to impose a meaningful order.

Victor Papanek

Hierarchy

Hierarchy is the order of importance within a social group (such as the regiments of an army) or in a body of text (such as the sections and subsections of a book). Hierarchical order exists in nearly everything we know, including the family unit, the workplace, politics, and religion. Indeed, the ranking of order defines who we are as a culture.

Hierarchy is expressed through naming systems: general, colonel, corporal, private, and so on. Hierarchy is also conveyed visually, through variations in scale, value, color, spacing, placement, and other signals. Expressing order is a central task of the graphic designer. Visual hierarchy controls the delivery and impact of a message. Without hierarchy, graphic communication is dull and difficult to navigate.

Like fashion, graphic design cycles through periods of structure and chaos, ornament and austerity. A designer's approach to visual hierarchy reflects his or her personal style, methodology, and training as well as the zeitgeist of the period. Hierarchy can be simple or complex, rigorous or loose, flat or highly articulated. Regardless of approach, hierarchy employs clear marks of separation to signal a change from one level to another. As in music, the ability to articulate variation in tone, pitch, and melody in design requires careful delineation.

In interaction design, menus, texts, and images can be given visual order through placement and consistent styling, but the user often controls the order in which information is accessed. Unlike a linear book, interactive spaces feature multiple links and navigation options that parcel the content according to the user's actions. Cascading Style Sheets (CSS) articulate the structure of a document separately from its presentation so that information can be automatically reconfigured for different output devices, from desktop computer screens to mobile phones, PDAs, kiosks, and more. A different visual hierarchy might be used in each instance.

The average computer desktop supports a complex hierarchy of icons, applications, folders, menus, images, and palettes—empowering users, as never before, to arrange, access, edit, and order vast amounts of information—all managed through a flexible hierarchy controlled and customised by the user.

As technology allows ever greater access to information, the ability of the designer to distill and make sense of the data glut gains increasing value.
Basic Typographic Hierarchy

The table of contents of a printed book—especially one with many parts—provides a structural picture of the text to follow. When books are marketed online, the table of contents is often reproduced to allow potential buyers to preview the book. A well-designed table of contents is thus not only functional but also visually exciting and memorable.

The basic function of a table of contents is to help readers locate relevant information and provide an image of how the book is organized. Does the text fall into a few main parts with various subdivisions, or does it consist of numerous small, parallel entries? The designer uses alignment, leading, indents, and type sizes and styles to construct a clear and descriptive hierarchy.

A poorly designed table of contents often employs conflicting and contradictory alignments, redundant numbering systems, and a clutter of graphic elements. Analyzing tables of contents—as well as restaurant menus and commercial catalogues—is a valuable exercise.

What's Wrong with This Picture?

The function of a table of contents is to list the elements of a book and help readers locate them. In the table of contents shown here, the page numbers are stretched across the page from the chapter titles, and the word "Chapter" has been repeated twenty-four times. "Manors for the Millions," 1932.

Lost in Paris

In this table of contents for a travel guide, the designer has used a modified mix of centered, justified, and flush-left alignments. The desire to create an overall justified setting dominates the logic of the page—hence the long first lines and rows of dots at the top level of information. The three listing lines at the head of the page are centered (a traditional solution), but the result is awkward in relation to the irregular mass of subheads, which weigh the page to the left. The whole affair is further confused by the elaborate system of indents, numerals, and letters used to outline the book's subsections. "Blue Guide to Paris," 1967.

Book as Billboard

This table of contents serves as a billboard for the book as well as a functional guide to its elements. The designer has approached the spread as a whole, with content streaming across it horizontally. The page numbers are aligned in columns next to the article titles, making it easy for readers to connect content with location. (No old-fashioned leader lines needed!) Chapter numbers aren't necessary because the sequential page numbers are sufficient to indicate the order of the pieces. The book has many contributors, a point made clear through the type styling. Nicholas Blackman, "Empire," 2004.
Hierarchy through Contrast: The Russian constructivists discovered that the dramatic use of scale, photography, and color infused their political messages with a powerful and provocative voice. These pioneers used contrast in the size, angle, and value of elements to create hierarchical separation.

This project asked designers to build a hierarchy by combining an image of their hand with a list of autobiographical facts. Eliminations were restricted to 30 or 45 degree angles; scale, position, color, and transparency were employed to control the transmission of information. Viviana Condore, MFA Studio.

Menu of Options: Designers use scale, placement, alignment, type style, and other cues to bring visual clarity to a body of content. Expressively, hierarchy is an active, interpretive process that can yield dynamic visual results. Typography: Jennifer Cole Phillips, faculty.
Dimensional Hierarchy

Messages applied to three-dimensional form have the added challenge of legibility across and around planes. Objects sitting in an environment are bathed in shadow and light. Unlike books that can conceal elaborate worlds inside slipcovers—automatically separated from exterior contexts—environmental messages must interact beyond their boundaries and become either a harmonious counterpart or poignant counterpoint to their neighbors.

Notice in these examples how type, color fields, and graphic elements carry the viewer’s eye around the dimensional form, often making a visual if not verbal connection with neighboring packages when stacked side by side or vertically.

Typography Across Three Dimensions

A visual hierarchy is often necessary for objects in a series. In these designs for vitamin packaging, students have expressed the identity of the individual product as well as the overall brand. Typography by Jennifer Cole Phillips, faculty.

Unexpected Hierarchy

This project takes existing brands and redirects them to unexpected audiences. Here, the designer focuses on a generic food line and reverses the usual order of emphasis by placing the nutrition facts front and center. Instead of words, images of the actual product are used to promote what’s inside. Advanced Graphic Design, Jennifer Cole Phillips, faculty.
Layers are simultaneous, overlapping components of an image or sequence. They are at work in countless media software programs, from Photoshop and Illustrator to audio, video, and animation tools, where multiple layers of image and sound (tracks) unfold in time.

The concept of layers comes from the physical world, and it has a long history in the traditions of mapping and musical notation. Maps and time lines use overlapping layers to associate different levels of data, allowing them to contribute to the whole while maintaining their own identities.

Most printing techniques require that an image be split into layers before it can be reproduced. From ink-jet printing to silk-screen and commercial lithography, each color requires its own plate, film, screen, ink cartridges, or toner drum, depending on the process. Digital technologies automate this process, making it more or less invisible to the designer.

Before the early 1990s, designers created "mechanicals" consisting of precisely aligned layers of paper and acetates. The designer or paste-up artist adhered each element of the page—type, images, blocks of color—to a separate layer, placing any element that touched any other element on its own surface.

This same principle is at work in the digital layers we use today, mobilized in new and powerful ways. The layers feature in Photoshop, for example, allows a new layer whenever the user adds text or pastes an image. Each layer can be independently filtered, transformed, masked, or multiplied. Adjustment layers allow global changes such as levels and curves to be created or discarded at any time. The image file becomes an archaeology of its own making, a stack of elements seen simultaneously in the main window, but represented as a vertical list in the layers palette.

Layers allow the designer to treat the image as a collection of assets, a database of possibilities. Working with a layered file, the designer quickly creates variations of a single design by turning layers on and off. Designers use layered files to generate storyboards for animations and interface elements such as buttons and rollovers.

Although the layered archaeology of the printed page or digital file tends to disappear in the final piece, experimental work often uncovers visual possibilities by exposing layers. The Dutch designer Jan van Toorn has used cut-and-paste techniques to create images whose complex surface suggests political action and unrest.

Many designers have explored an off-register or misprinted look, seeking rawness and accidental effects by exposing the layers of the printing and production processes. Contemporary graphic artists Ryan McGinness and Joshua Davis create graphic images composed of enormous numbers of layers that overlap in arbitrary, seemingly uncoordinated ways.

Layers, always embedded in the process of mechanical reproduction, have become intuitive and universal. They are crucial to how we both read and produce graphic images today.
Line

A line is an infinite series of points. Understood geometrically, a line has length, but no breadth. A line is the connection between two points, or it is the path of a moving point.

A line can be a positive mark or a negative gap. Lines appear at the edges of objects and where two planes meet.

Graphically, lines exist in many weights; the thickness and texture as well as the path of the mark determine its visual presence. Lines are drawn with a pen, pencil, brush, mouse, or digital code. They can be straight or curved, continuous or broken. When a line reaches a certain thickness, it becomes a plane. Lines multiply to describe volumes, planes, and textures.

A graph is a rising and falling line that describes change over time, as in a waveform charting a heart beat or an audio signal.

In typographic layouts, lines are implied as well as literally drawn. Characters group into lines of text, while columns are positioned in blocks that are flush left, flush right, and justified. Imaginary lines appear along the edges of each column, expressing the order of the page.

Type sits on a baseline.

Line/Shape Study

Vector-based software uses a closed line to define a shape. Here, new lines are formed by the intersection of shapes, creating a swirling form reminiscent of the path of a steel point pen. Ryan Gladhill, MFA Studio.
Layers are simultaneous, overlapping components of an image or sequence. They are at work in countless media software programs, from Photoshop and Illustrator to audio, video, and animation tools, where multiple layers of image and sound (tracks) unfold in time.

The concept of layers comes from the physical world, and it has a long history in the traditions of mapmaking and musical notation. Maps and time lines use overlapping layers to associate different levels of data, allowing them to contribute to the whole while maintaining their own identities.

Most printing techniques require that an image be split into layers before it can be reproduced. From ink-jet printing to silkscreen and commercial lithography, each color requires its own plate, film, screen, ink cartridge, or toner drum, depending on the process. Digital technologies automate this process, making it more or less invisible to the designer.

Before the early 1990s, designers created "mechanicals" consisting of precisely aligned layers of paper and acetate. The designer or paste-up artist adhered each element of the page—type, images, blocks of color—to a separate layer, placing any element that touched any other element on its own surface.

This same principle is at work in the digital layers we use today, mobilized in new and powerful ways. The layers feature in Photoshop creates a new layer whenever the user adds text or pastes an image. Each layer can be independently filtered, transformed, masked, or multiplied. Adjustment layers allow global changes such as levels and curves to be revised or discarded at any time. The image file becomes an archaeology of its own making, a stack of elements seen simultaneously in the main window, but represented as a vertical list in the layers palette.

Layers allow the designer to treat the image as a collection of assets, a database of possibilities. Working with a layered file, the designer quickly creates variations of a single design by turning layers on and off. Designers use layered files to generate storyboards for animations and interface elements such as buttons and rollovers.

Although the layered archaeology of the printed page or digital file tends to disappear in the final piece, experimental work often uncovers visual possibilities by exposing layers. The Dutch designer Jan van Toorn has used cut-and-paste techniques to create images whose complex surfaces suggest political action and unrest.

Many designers have explored an off-register or misprinted look, seeking rawness and accidental effects by exposing the layers of the printing and production processes. Contemporary graphic artists Ryan McGinness and Joshua Davis create graphic images composed of enormous numbers of layers that overlap in arbitrary, seemingly uncoordinated ways.

Layers, always embedded in the process of mechanical reproduction, have become intuitive and universal. They are crucial to how we both read and produce graphic images today.
Cut and Paste
The cubist painters popularized collage in the early twentieth century. By combining bits of printed paper with their own drawn and painted surfaces, they created an artistic technique that profoundly influenced both design and the fine arts. Like the cubists, modern graphic designers use collage to juxtapose layers of content, yielding surfaces that oscillate between flatness and depth, positive and negative.

The cut-and-paste function used in nearly every software application today refers to the physical process of collage. Each time you copy or delete a picture or phrase and insert it into a new position, you reference the material act of cutting and pasting. The collaged history of an image or a document largely disappears in the final work, and designers often strive to create seamless, invisible transitions between elements. Foregrounding the cut-and-paste process can yield powerful results that indicate the designer's role in shaping meaning.

Mixing Media Published in 1989 to commemorate the Declaration of Human Rights a century earlier, this poster by Jan van Toorn used photomechanical processes to mix handmade and mass-media imagery. Sources of paper radiate like energy from the central handshake. Jan van Toorn. La Lutte Continue (The Fight Continues). 1989.
The many-sidedness of human experience is seriously threatened by the common denominator of mass communication. That is why designers who are concerned by the corporate take-over of expression must first allow themselves sufficient room to maneuver for a dissident attitude vis-a-vis the normative determination of the media culture. Jan van Toorn.

Combine and Contrast

In the project shown here, students were given two digital photographs and the quotation above by the legendary Dutch designer Jan van Toorn. The photographs depict two idealized visions of femininity: an industrially produced garden statue of the Madonna and a department-store mannequin. The quote by van Toorn calls on designers to manipulate creatively the global language of standardized images.

As part of the design process, students were asked to study van Toorn's work and consider the ways he splices and overlaps words and images. Seeking to express his own "dissident attitude" toward mass media, van Toorn generates surprise and tension by presenting fragments of words and images, working interactively with hands-on cut-and-paste techniques and photomechanical processes. He often cuts or places images at an angle to indicate informality and change. Graphic Design II, Jan van Toorn, visiting faculty.

Cut, Crop, Paste To create this museum poster, the Dutch designer Jan van Toorn cut and pasted elements, assembling them for photomechanical reproduction. Jan van Toorn. Je ne cherche pas, je trouve. I do not search, I find. Cultural centre De Beyerd, Breda, Netherlands, 1989.

Claire Smalley
Gray Haas
Siobha Reddy

Lindsey Sherman
Katie Evans
Marleen Kauf

Giulia Marconi
Jonnie Hallman
Davin Bradford
Printed Layers: Nearly every color printing process uses layers of ink, but the layers are usually compiled to create the appearance of a seamless, singular surface. The screen prints above use overlapping and misaligned layers of ink to call attention to the structure of the surface. John P. Coniglio, MFA Studio.

Make-ready: To conserve materials, printers reuse old press sheets while getting their presses up to speed, testing ink flow and position before pulling their final prints. Called "make-ready," these layered surfaces are full of beautiful accidental effects, as seen in this screen-printed make-ready. Paul Sahre and David Plunkert.
Mixing Layers: The two compositions shown here were each made from the same set of digital images, layered together to create different designs. Various relationships are built by changing the scale, position, color, or transparency of elements.

April Osmanoff

HyunBoo Lim
Spatial Layers

Layered objects and surfaces exist throughout the visual environment. On the walls of an old farmhouse, layers—from wallpaper and works of art to ordinary electrical outlets—accumulate over time.

By layering scans of flat surfaces with photographs of three-dimensional space, the designer of the book shown here has created an interplay between surface and depth. Overlapping forms and optical alignments produce surprising spatial relationships. Even the shallow space of a scanned surface can reveal an element of depth through its texture, folds, transparency, and imperfections. The surface thus conveys a sense of time and history.

Collage with Depth

The designer has created a stack of poems written by his grandfather with photographs of the wallpaper in his farmhouse. The pages invite the viewer to read the texts against a complex spatial surface.

Jeremy Bonn, MFA Studio, Charles Bonner, handwritten poems.
Temporal Layers

In musical notation, the notes for each instrument in a symphony or for each voice in a chorus appear on parallel staves. The graphic timelines used in audio, video, and animation software follow this intuitive convention, using simultaneous tracks to create composite layers of image and sound.

In soap operas and television dramas, parallel threads unfold alongside each other and converge at key moments in the story. The split screens, inset panels, and text feeds commonly seen in news programming allow several visual tracks to play simultaneously.

From musical notation and computer interfaces to narrative plot lines, parallel linear tracks (layers in time) are a crucial means for describing simultaneous events.

Musical Notation This score shows the notes played by four different musicians simultaneously: first violin, second violin, viola, and cello. Each staff represents a separate instrument. Ludwig van Beethoven, musical score. String Quartet No. 3 in G Major, 1799.

Interactive Notation Digital composer Hans-Christoph Steiner has devised his own graphic notation system to show how to manipulate digital samples. Time flows from left to right. Each color represents a sample. Each sample controller has two arrays: the brighter, bigger one on top controls sample playback, and a smaller, darker one at the bottom controls start and pan. The lowest point of the sample array is the beginning of the sample, the highest is the end, and the height of the array is how much and what part of the sample to play, starting at that point in time. Hans-Christoph Steiner, interactive musical score. Bodyline, 2004.

Audio Software Applications for editing digital audio tracks employ complex and varied graphics. Here, each track is represented by a separate timeline. The yellow lines indicate volume, and the green lines show panning left to right. Audio composed by Jason Olender, MFA Studio. Software: Apple Logic Pro Audio.
Physical, Virtual, and Temporal Layers

In this project, designers began by creating a series of six-by-six-inch collages with four square sheets of colored paper. We used origami paper. Each designer cut a square window into a larger sheet of paper so that they could move the colored sheets around and experiment with different designs.

In the second phase of the project, designers translated one of their physical collages into digital layers. Each physical layer became a separate layer in the digital file. They generated new compositions by digitally changing the color, scale, transparency, orientation, and position of the digital layers.

In the third phase, one digital composition became a style frame (the basis of a sequential animation). Each designer planned a sequence, approximately ten seconds long, that loops; that is, it begins and ends on an identical frame. They created nine-panel storyboards showing the sequence.

In the final phase, designers imported their style frames into a digital animation program (After Effects), using each layer of the style frame as a layer in the timeline to create a sequence that changes over time. Graphic Design II, Ellen Lupton, Faculty.
Transparency

Transparency means a simultaneous perception of different spatial locations... The position of the transparent figures has equivocal meaning as one sees each figure now as the closer, now as the farther one. György Kepes

As a social value, transparency suggests clarity and directness. The idea of "transparent government" promotes processes that are open and understandable to the public, not hidden behind closed doors. Yet in design, transparency is often used not for the purposes of clarity, but to create dense, layered imagery built from veils of color and texture.

Any surface in the physical world is more or less transparent or opaque: a piece of wood has 100 percent opacity, while a room full of air has nearly zero. Image-editing software allows designers to adjust the opacity of any still or moving picture. Software lets you see through wood, or make air into a solid wall.

Transparency becomes an active design element when its value is somewhere between zero and 100 percent. In this chapter, we assume that a "transparent" image or surface is, generally, opaque to some degree. Indeed, you will discover that a surface built out of completely opaque elements can function in a transparent way.

Transparency and layers are related phenomena. A transparent square of color appears merely pale or faded until it passes over another shape or surface, allowing a second image to show through itself. A viewer thus perceives the transparency of one plane in relation to a second one. What is in front, and what is behind? What dominates, and what recedes?

Video and animation programs allow transparency to change over time. A fade is created by making a clip gradually become transparent. Dissolves occur when one clip fades out (becoming transparent) while a second clip fades in (becoming opaque).

This chapter begins by observing the properties of physical transparency, and then shows how to build transparent surfaces out of opaque graphic elements. We conclude by looking at the infinite malleability of digital transparency. Transparency is a fascinating and seductive principle. How can it be used to build meaningful images? Transparency can serve to emphasize values of directness and clarity through adjustments and juxtapositions that maintain the wholeness or legibility of elements. Transparency also can serve to build complexity by allowing layers to mix and merge together. Transparency can be used thematically to combine or contrast ideas, linking levels of content. When used in a conscious and deliberate way, transparency contributes to the meaning and visual intrigue of a work of design.

Life History: Historical and contemporary photographs and documents are layered over a satellite image from Google Earth of the land these peoples have inhabited. Transparency is used to separate the elements visually. Jeremy Butts, MPA Studio.
Plane
A plane is a flat surface extending in height and width. A plane is the path of a moving line; it is a line with breadth. A line closes to become a shape, a bounded plane. Shapes are planes with edges. In vector-based software, every shape consists of line and fill. A plane can be parallel to the picture surface, or it can skew and recede into space. Ceilings, walls, floors, and windows are physical planes. A plane can be solid or perforated, opaque or transparent, textured or smooth.
A field of text is a plane built from points and lines of type. A typographic plane can be dense or open, hard or soft. Designers experiment with line spacing, font size, and alignment to create different typographic shapes.

Space and Volume
A graphic object that encloses three-dimensional space has volume. It has height, width, and depth. A sheet of paper or a computer screen has no real depth, of course, so volume is represented through graphic conventions.
Linear perspective simulates optical distortions, making near objects appear large as far objects become small, receding into nothing as they reach the horizon. The angle at which elements recede reflects the position of the viewer. Are the objects above or below the viewer's eye level? Camera lenses replicate the effects of linear perspective, recording the position of the camera's eye.
Axonometric projections depict volume without making elements recede into space. The scale of elements thus remains consistent as objects move back into space. The result is more abstract and impersonal than linear perspective.
Architects often use axonometric projections in order to keep a consistent scale across the page. Digital game designers often use this technique as well, creating maps of simulated worlds rather than depicting experience from the ground.
Physical Transparency

No material is wholly transparent. Ripples disturb the transparency of water, while air becomes thick with smoke or haze. Glass can be tinted, mirrored, cracked, etched, scratched, frosted, or painted to diminish its transparency. The reflective character of glass makes it partially opaque, an attribute that changes depending on light conditions.

A solid material such as wood or metal becomes transparent when its surface is perforated or interrupted. Venetian blinds shift from opaque to transparent as the slats slant open. Adjusting the blinds changes their degree of transparency.
Graphic Transparency

Designers can translate the effects of physical transparency into overlapping layers of lines, shapes, textures, or letterforms. We call this phenomenon "graphic transparency." Just as in physical transparency, two or more surfaces are visible simultaneously, collapsed onto a single surface. A field of text placed over an image is transparent, revealing parts of the image through its open spaces.

The compression of multiple graphic forms into a shallow space has been part of the vocabulary of architecture and decorative design for hundreds of years. Traditional patterns such as plaid use colored thread to build up intersecting fields of color. Linear elements in classical and modern architecture, such as columns and moldings, often appear to pass through each other.¹

Macmillan Company Building, New York, 1924. This early skyscraper employs vertical elements that span the upper stories of the building. The horizontal elements sit behind the vertical surfaces, establishing a second plane that appears to pass continuously behind the front planes, like the threads in a plaid fabric. Architects: Carrere and Hastings with Shreve and Lamb. Vintage photograph.

Plaid Fabric Traditional plaid fabrics are made by weaving together bands of colored thread over and under each other. Where contrasting colors mix, a new color appears. The horizontal and vertical stripes literally pass through each other on the same plane.

Over-Dyed Fabric To create this non-traditional print, fashion designer Han Feng bunched and folded a delicate floral print and then dyed it, creating long irregular stripes that sit on top of the floral pattern. The result is two competing planes of imagery compressed onto a single surface.

Han Feng, polyester fabric.

Typographic Plaid Lines pass in front of a base text. The lines are like a slatted or perforated surface through which the text remains visible. Atta Sereshk.

Linear Transparency The letterforms in this pattern have been reduced to outlines, rendering them functionally transparent even as they overlap each other. Attilo Miller and Jereym Hoffman, Pentagram, packaging for Mohawk Paper.
Graphic Transparency In each of these compositions, a photograph has been covered with a field of graphic elements. The graphic layer becomes an annotated commentary on the image underneath.

Jeremy Bolte

Jason Okutsu
Digital Transparency

Imaging software allows designers to alter the opacity of nearly any graphic element, including type, photographs, and moving images. To do this, the software employs an algorithm that multiplies the tonal values of one layer against those of another, generating a mix between the two layers. To make any image transparent involves compromising its intensity, lowering its overall contrast.

Transparency is used not only to mix two visual elements, but also to make one image fade out against its background. In video and animation, such fades occur over time. The most common technique is the fade-to-black, which employs the default black background. The resulting clip gradually loses intensity while becoming darker. Video editors create a fade-to-white by placing a white background behind the clip. The same effects are used in print graphics to change the relationship between an image and its background.
Seeing Through: This composition builds relationships between layers of graphic elements and an underlying photograph. The designer has manipulated the elements graphically as well as changing their digital transparency. Yee Tuo, MFA Studio. Photography: Nancy Froehlich.
Modularity

Two eight-stud LEGO bricks can be combined in twenty-four ways. Three eight-stud LEGO bricks can be combined in 1,068 ways.

Six eight-stud LEGO bricks can be combined in 102,981,500 ways. With eight bricks the possibilities are virtually endless.

Every design problem is completed within a set of constraints or limitations. These limits can be as broad as "design a logo," as generic as "print on standard letter paper," or as narrow as "arrange six circles in a square space." Working within the constraints of a problem is part of the fun and challenge of design.

Modularity is a special kind of constraint. A module is a fixed element used within a larger system or structure. For example, a pixel is a module that builds a digital image. A pixel is so small, we rarely stop to notice it, but when designers create pixel-based typefaces, they use a grid of pixels to invent letterforms that are consistent from one to the next while giving each one a distinctive shape.

A nine-by-nine grid of pixels can yield an infinite number of different typefaces. Likewise, a tiny handful of LEGO bricks contains an astonishing number of possible combinations. The endless variety of forms occurs, however, within the strict parameters of the system, which permits just one basic kind of connection.

Building materials—from bricks to lumber to plumbing parts—are manufactured in standard sizes. By working with ready-made materials, an architect helps control construction costs while also streamlining the design process.

Designers are constantly making decisions about size, color, placement, proportion, relationships, and materials as well as about subject matter, style, and imagery. Sometimes, the decision-making process can be so overwhelming, it's hard to know how to begin and when to stop. When a few factors are determined in advance, the designer is free to think about other parts of the problem. A well-defined constraint can free up the thought process by taking some decisions off the table. In creating a page of typography, for example, a designer can choose to work within the constraints of one or two type families, and then explore different combinations of size, weight, and placement within those families of elements.

The book you are reading is organized around a typographic grid whose basic module is a square. By accepting the square unit as a given, we were able to mix and match images while creating a feeling of continuity across the book. The square units vary in size, however (keeping the layouts from getting dull), and some pictures stretch across more than one module (or ignore the grid altogether). Rules are helpful, but it's fun to break them.

Post-it WallPaper This wall installation was built solely from three colors of Post-it notes shown, creating the optical effect of an enlarged halftone image or modular typographic. Norvin Bratts and Bruce Wilson. Post Typography.
Working with Constraints

In the projects shown here, graphic designers have used modular elements to produce unpredictable results. Try looking at familiar systems from a fresh angle. Given the constraints of any system, how can you play with the rules to make something new?

A child's set of alphabet blocks looks a certain way, for example, because the blocks are made from perfect cubes. But what if alphabet blocks were made from rectangles instead of cubes? The oddly proportioned faces of the blocks at left provided a framework for designing new letterforms in response to the constraints provided by the blocks of wood.

Standard materials such as laser paper are often used in generic ways. A standard sheet of office paper can be very dull indeed. Yet with creative thinking, an ordinary piece of paper can be used for dramatic effect. The temporary signage program shown on the opposite page employs economical processes and everyday materials to produce graphics at a lavish scale—at a very low cost.

Alphabet Blocks These rectangular wooden blocks have different alphabet printed on each side. Nolen Strals and Bruce Willen, Paul Typographics.
Clean and Dirty Systems: Working with a nine-by-nine-square grid of circles, students created four letterforms with common characteristics such as weight, proportion, and density. After creating a consistent and well-structured set of characters, the students introduced decay, degradation, distortion, randomness, or physicality into the design. The underlying structure becomes an armature for new and unexpected processes.

Approaches to making the clean system dirty include graphic techniques such as applying a filter to the original image or systematically varying the elements, as well as using physical techniques such as painting, stitching, or assembling. Typography by Ellen Lupton, faculty.
Modular Alphabet: In these examples, designers created systems of characters using three basic shapes: a square (each side equals one unit), a rectangle (one unit by two units), and a quarter-circle (radius equals one unit). Shapes could be assembled in any way, but their relative scale could not change.

Some forms are dense and solid, while others are split apart. Some use the curved elements to shape the outer edge, while others use curves to cut away the interior. Most have a simple profile, but it is also possible to build a detailed texture out of smaller scaled elements. Experimental Typography: Helen Strais and Bruce Witten, faculty.

Architectural Alphabet: The three-dimensional design software AutoCAD has been used to spell out the phrase “word book” in buildings. The rectilinear modules of architecture become the building blocks for letterforms. Johanna Barthmaier, Typography I. Ellen Luprock, faculty.
Ready-made Alphabet: The challenge here was to create a set of characters using objects from the environment rather than drawing them digitally or by hand. The designers discovered letterforms hidden in the things around them. Experimental Typography, Robin Stroul and Bruce Witten, faculty.

Jennifer Bagliari

Oliver Munday
Point and Line: Physical and Digital
In the lettering experiments shown here, each word is written with lines, points, or both, produced with physical elements, digital illustrations, or code-generated vectors.

Marian Bantjes, visiting faculty.
Symbol Systems
A symbol stands for or represents objects, functions, and processes. Many familiar symbols, such as McDonald's golden arches, are highly distilled, stripped of extraneous detail, delivering just enough information to convey meaning. Symbol systems are often based on geometric modules that come together to create myriad forms and functions.

Modular Heidits Geometrically derived forms combine to shape myriad hair styles. Yue Tu, MFA Studios.

Counterform Pictures Counters extracted from letters in a title cohere into visual narratives. Niren Brak and Bruce Wilen, Paul Typographics.

Symbolscape This landscape is built and described by a series of modularly structured symbols stacked and layered to denote nature, flora, and fauna. Yue Tu, MFA Studio.
Pixel Art The image above is built from a modular grid of squares, colored and combined to make a highly abstracted social scene. Pixels are the building blocks of any digital image. Here, they become an expressive element. April Osmanof, MPA Studio.

Pixel Effects Like a Chuck Close painting, this photographic detail teases on an abstract quality when enlarged—smooth, graduated, tonal hues design mg elemental square segments. April Osmanof, MPA Studio. Photograph: Marc Albin.
A City of Cubes: An urban landscape teems with people, planes, clouds, automobiles, skyscrapers, and trees—all built from cubes in Adobe Illustrator. Young Seok Lee, MFA Studio.

Extrapolations in Excel: Those elaborate drawings utilize the gridted compartments of an Excel spreadsheet as a catalyst and a constraint. Danielle Aubert, MFA thesis, Yale University School of Art.
A grid is a network of lines. The lines in a grid typically run horizontally and vertically in evenly paced increments, but grids can be angled, irregular, or even circular as well.

When you write notes on a pad of lined paper, or sketch out a floor plan on graph paper, or practice handwriting or calligraphy on ruled pages, the lines serve to guide the hand and eye as you work.

Grids function similarly in the design of printed matter. Guidelines help the designer align elements in relation to each other. Consistent margins and columns create an underlying structure that unifies the pages of a document and makes the layout process more efficient.

In addition to organizing the active content of the page (text and images), the grid lends structure to the white spaces, which cease to be merely blank and passive voids but participate in the rhythm of the overall system.

A well-made grid encourages the designer to vary the scale and placement of elements without relying wholly on arbitrary or whimsical judgments. The grid offers a rationale and a starting point for each composition, converting a blank area into a structured field.

Flag Wall Grids appear throughout the built environment, revealing both order and details. Jason Olszake, MFA Studio.

Many artists have embraced the grid as a rational, universal form that exists outside of the individual producer. At the same time, the grid is culturally associated with modern urbanism, architecture, and technology. The facades of many glass high rises and other modern buildings consist of uniform ribbons of metal and glass that wrap the building’s volume in a continuous skin. In contrast with the symmetrical hierarchy of a classical building, with its strong entranceway and tiered pattern of windows, a gridded facade expresses a democracy of elements.

Grids function throughout society. The street grids used in many modern cities around the globe promote circulation among neighborhoods and the flow of traffic, in contrast with the suburban cul de sac, a dead-end road that keeps neighborhoods closed off and private.

The grid imparts a similarly democratic character to the printed page. By marking space into numerous equal units, the grid makes the entire page available for use; the edges become as important as the center. Grids help designers create active, asymmetrical compositions in place of static, centered ones. By breaking down space into smaller units, grids encourage designers to leave some areas open rather than filling up the whole page.

Typography is mostly an act of dividing a limited surface. Will Baumstein

Software interfaces encourage the use of grids by making it easy to establish margins, columns, and page templates. Guidelines can be quickly dragged, dropped, and deleted and made visible or invisible at will. Indeed, it is a good idea when working on screen to switch off the guidelines from time to time, as they can create a false sense of fullness and structure as well as clutter one’s view.

This chapter looks at the grid as a means of generating form, arranging images, and organizing information. The grid can work quietly in the background, or it can assert itself as an active element. The grid becomes visible as objects come into alignment with it. Some designers use grids in a strict, absolute way, while others see them as a starting point in an evolving process. This book is designed with a strong grid, but when an image or layout needs to break step with the regimen, it is allowed to do so.
Grids Generate Form
The cells and nodes of a grid can be used to generate complex pattern designs as well as simple rectangles. Dividing a square into nine identical units is a classic design problem. Numerous simple forms and relationships can be built against this simple matrix. (N. Okada and J. P. Corigan, MFA Studio)

Form and Content
The grid has a long history within modern art and design as a means for generating form. You can construct compositions, layouts, and patterns by dividing a space into fields and filling in or delineating its cells in different ways. Try building irregular and asymmetric compositions against the neutral, ready-made backdrop of a grid. The same formal principles apply to organizing text and images in a publication design.

Grids Organize Content
The nine-square grid divides the page into spaces for images and text. Although each layout has its own rhythm and scale, the pages are unified by the grid's underlying structure. The book you are reading is built around a similar nine-square grid. (J. P. Corigan, MFA Studio)

Nine-square Grid: Color Fields
The grid provides a structure for organizing fields of color that frame and overlap each other. Complexity emerges against a simple armature. (J. P. Corigan, MFA Studio)
Strict Grid Here, the rigidly imposed grid emphasises the flat, graphic character and head-on viewpoint of the photographs.

Jeremy Brett, N.R.A. Studios.

Broken Grid The rectilinear photographs overlap and misalign to create a sense of movement and depth. Individually, each image is static, but together, they convey action and change. John P. Carrigan, N.R.A. Studio.
Calendar Grid

Standard calendar designs use columns and rows to organize the weeks and days that make up a month. The days of the week align in vertical columns, while each week occupies a horizontal row. This form has become standard and universal, as have various templates used in day planners.

Developing alternate ways to structure a calendar is a good design challenge. The underlying problem in any calendar design is to use two-dimensional space to represent a sequence in time. The grid can be circular, diagonal, or freeform.
Page Grids

A standard textbook is designed with a one-column grid: a single block of body copy is surrounded by margins that function as a simple frame for the content. For hundreds of years, Bibles have been designed with pages divided into two columns. Textbooks, dictionaries, reference manuals, and other books containing large amounts of text often use a two-column grid, breaking up space and making the pages less overwhelming for readers.

Magazines typically use grids with three or more vertical divisions. Multiple columns guide the placement of text, headlines, captions, images, and other page elements. One or more horizontal "hang lines" provide additional structure. A skilled designer uses a grid actively, not passively, allowing the modules to suggest intriguing shapes and surprising placements for elements.

Multicolumn Grid

This complex design is built around a four-column grid structure. It comments on medieval book design traditions. Oskars Calka, Typography I, Ellen Lupton, Novita.

Many Columns, Many Choices

The page layouts shown here from Print magazine, designed by Pentagram, employ a complex, multicolumn grid. Each column structure gives the pages their vertical grain, while horizontal hang lines anchor each spread, bringing elements into text alignment. The grid helps the layout designer create active, varied pages that are held together by an underlying structure. The grid accommodates a mix of sizes and proportions in both image and text blocks. And, where appropriate, the designer breaks the grid altogether. Adobo Miller and John Kudos, Pentagram, Print magazine.
Pattern

The principles discoverable in the works of the past belong to us; not so the results.

Owen Jones

The creative evolution of ornament spans all of human history. Shared ways to generate pattern are found in cultures around the world. Universal principles underlie diverse styles and icons that speak to particular times and traditions.

This chapter shows how to build complex patterns around core concepts. Dots, stripes, and grids provide the architecture behind an infinite range of designs. By composing a single element in different schemes, the designer can create endless variations, building complexity around a logical core.

Styles and motifs of pattern-making evolve within and among cultures, and they move in and out of fashion. They travel from place to place and time to time, carried along like viruses by the forces of commerce and the restless desire for variety.

In the twentieth century, modern designers avoided ornate detail in favor of minimal adornment. In 1908, the Viennese design critic Adolf Loos famously conflated "Ornament and Crime." He linked the human lust for decoration with primitive tattoos and criminal behavior.¹

Yet despite the modern distaste for ornament, the structural analysis of pattern is central to modern design theory. In 1896, Owen Jones created his monumental Grammar of Ornament, documenting decorative vocabularies from around the world. Jones's book encouraged Western designers to copy and reinterpret "exotic" motifs from Asia and Africa, but it also helped them recognize principles that unite an endless diversity of forms.

Today, surface pattern is creating a vibrant discourse. The rebirth of ornament is linked to the revival of craft in architecture, products, and interiors, as well as to scientific views of how life emerges from the interaction of simple rules.

The decorative forms presented in this chapter embrace a mix of formal structure and organic irregularity. They meld individual authorship with rule-based systems, and they merge formal abstraction with personal narrative. By understanding how to produce patterns, designers learn how to weave complexity out of elementary structures, participating in the world's most ancient and prevalent artistic practice.

Crazy Quilt: Mixing and matching patterns is an ancient enterprise. Here, a mix is made with a palette of digital elements that communicate with each other. Jeremy Botta, MFA Studio.
The secret to success in all ornament is the production of a broad general effect by the repetition of a few simple elements.

Owen Jones

Dots, Stripes, and Grids
In the nineteenth century, designers began analyzing how patterns are made. They found that nearly any pattern arises from three basic forms: isolated elements, linear elements, and the criss-crossing or interaction of the two. Various terms have been used to name these elementary conditions, but we will call them dots, stripes, and grids.

Any isolated form can be considered a dot, from a simple circle to an ornate flower. A stripe, in contrast, is a linear path. It can consist of a straight, solid line, or it can be built up from smaller elements (dots) that link together visually to form a line.

These two basic structures, dots and stripes, interact to form grids. As a grid takes shape, it subverts the identity of the separate elements in favor of a larger texture. Indeed, creating that larger texture is what pattern design is all about. Imagine a field of wilflowers. It is filled with spectacular individual organisms that contribute to an overall system.

From Point to Line to Grid As dots move together, they form lines, and other shapes (which still being dots). As stripes cross over each other and become grids, they cut out the field into new figures, which function like new dots or new stripes.

Some of the most visually fascinating patterns result from figure-ground ambiguity. The identity of a form can oscillate between being a figure itself, being a ground or support for another, opposing figure.

Repeating Elements
How does a simple form—a dot, a square, a flower, a cross—populate a surface to create a pattern that calms, pleases, or surprises us?

Whether rendered by hand, machine, or code, a pattern results from repetition. An army of dots can be regulated by a rigid geometric grid, or it can randomly swarm across a surface via irregular handmade marks. It can spread out in a continuous veil or concentrate its force to pockets of intensity.

In every instance, however, patterns follow some repetitive principle, whether dictated by a mechanical grid, a digital algorithm, or the physical rhythm of a crafts-person's tool as it works along a surface.

In the series of pattern studies developed here and on the following pages, a simple lozenge form is used to build designs of varying complexity. Experiments of this kind can be performed with coarse or base shapes, yielding an endless range of individual results.

One Element, Many Patterns The basic element in these patterns is a lozenge shape. Based on the orientation, proximity, scale, and color of the lozenges, they group into overlapping lines, forming a nested grid.

Jeremy Botts, MFA Studio.
Line Study: Order and Disorder

Inspired by maps of population density, this digital drawing uses lines to describe shapes and volumes as well as to form dense splashes of texture. The drawing originates from the center with a series of hexagons. As the hexagons migrate to the left, they become more open. As they migrate to the right, they end, becoming soft and organic. Ryan Gladhill, MFA Studio.
One Element, Many Patterns In this series of designs, the isosceles shape functions as a dot, the primitive element at the core of numerous variations. The isosceles dot combines with other dots to form quatrefoils in rows superimposed as lines.

As isosceles of common color or orientation begin to associate with each other visually, additional figures take shape across the surface. Jeremy Botta, MFA Studio.

Changing Color, Scale, and Orientation Altering the color contrast between elements or changing the overall scale of the pattern transforms its visual impact. Color shifts can be uniform across the surface, or they can take place in gradients or steps. Turning elements on an angle or changing their scale also creates a sense of depth and motion. New figures emerge as the isosceles rotates and repeats. Jeremy Botta, MFA Studio.
Ikonik Patterns

Here, traditional pattern structures have been populated with images that have personal significance for the designer: poppies, bombs, bongies cords, yellow camouflage, and slices of bright green cake. The single tiles above can be repeated into larger patterns, as shown opposite. Spence Holman, MFA Studio.
Regular and irregular interesting pattern designs often result from a mix of regular and irregular forces as well as abstract and recognizable imagery. Here, regimented rows of icons overlap to create dense crowds, as well as orderly battalions. Yong Seok Lee, MFA Studio.

Random Repeat. These patterns appear highly irregular, yet they are composed of repeating tiles. To make this kind of pattern, the designer needs to make the left and right edges and the top and bottom edges match up with those of an identical tile. Anything can take place in the middle of the tile.

The tiles shown here are squares, but they could be rectangles, diamonds, or any other interlocking shape. Yong Seok Lee, MFA Studio.
Grid as Matrix: An infinite number of patterns can be created from a common grid. In the simplest patterns, each cell is turned on or off. Larger figures take shape as neighboring clusters fill in.

More complex patterns occur when the grid serves to locate forms without dictating their outlines or borders. Jason Ikeda, MFA Studio.
Code-Based Patterns

Every pattern follows a rule. Defining rules with computer code allows the designer to create variations by changing the input to the system. The designer creates the rule, but the end result may be unexpected.

The patterns shown here were designed using Processing, the open-source computer language created for designers and visual artists. All the patterns are built around the basic form of a binary tree, a structure in which every node yields no more than two offspring. New branches appear with each iteration of the program.

The binary tree form has been repeated, rotated, inverted, connected, and overlapped to generate a variety of pattern elements, equivalent to "tiles" in a traditional design. By varying the inputs to the code, the designer created four different tiles, which she joined together in Photoshop to produce a larger repeating pattern. The principle is no different from that used in many traditional ornamental designs, but the process has been automated, yielding a different kind of density.

Vary the input Four different base elements were created by varying the input to the code. The base "tiles" are joined together to create a Repeat pattern; new figures emerge where the tiles come together, just as in traditional ornament. Yeohyun Ahn, Interactive Media II, James Rives, faculty.
Diagram

In emphasizing evidential quality and beauty, I also want to move the practices of analytical design far away from the practices of propaganda, marketing, graphic design, and commercial art.
Edward R. Tufte

A diagram is a graphic representation of a structure, situation, or process. Diagrams can depict the anatomy of a creature, the hierarchy of a corporation, or the flow of ideas. Diagrams allow us to see relationships that would not come forward in a straight list of numbers or a verbal description.

Many of the visual elements and phenomena described in this book—from point, line, and plane to scale, color, hierarchy, layers, and more—converge in the design of diagrams. In the realm of information graphics, the aesthetic role of these elements remains important, but something else occurs as well. Graphic marks and visual relationships take on specific meanings, coded within the diagram to depict numerical increments, relative size, temporal change, structural links, and other conditions.

The great theorist of information design is Edward R. Tufte, who has been publishing books on this subject since 1983. Tufte finds a certain kind of beauty in the visual display of data—a universal beauty grounded in the laws of nature and the mind's ability to comprehend them.1 Tufte has called for removing the practice of information design from the distorting grasp of propaganda and graphic design. He argues that a chart or diagram should employ no metaphoric distractions or excessive flourishes (what he has called "chart junk"), but should stay within the realm of objective observation.

Tufte's purist point of view is profound and compelling, but it may be overly restrictive. Information graphics do have a role to play in the realm of expressive and editorial graphics. The language of diagrams has yielded a rich and evocative repertoire within contemporary design. In editorial contexts, diagrams often function to illuminate and explain complex ideas. They can be clean and reductive or richly expressive, creating evocative pictures that reveal surprising relationships and impress the eye with the sublime density and grandeur of a body of data.

Many of the examples developed in this chapter are rigorous but not pure. Some pieces use diagrams to depict personal histories, a process that forces the designer to develop systematic ways to represent subjective experience. Such an approach is seen in the extravagant autobiographical diagram presented on the page opposite, by Marien Bantjes. Her map does not aim to convey evidence in a strictly scientific way, but rather uses analytical thinking to unleash a language that is both personal and universal, building complexity around basic structures.

Making Connections
A network, also called a graph, is a set of connections among nodes or points.1 There are various ways to connect the nodes in a network, resulting in different kinds of organization. Centralized networks include pyramids and trees, where all power issues from a common point. A decentralized network has a spine with radiating elements, as in an interstate highway system. A distributed network has node-to-node relationships with no spine and no center. The Internet is a distributed network peppered with concentrated nodes of connectivity.

Networks are everywhere—not just in technology, but throughout nature and society. A food chain, a city plan, and the pathway of a disease are all networks that can be described graphically with points and lines.

Designing Networks In this project, designers connect a grid of dots with lines, producing designs that reflect different types of networks: centralized, decentralized, and distributed.

Graphic Design II: Ellen Lupton, faculty.
Overlapping Relationships

People don't fall into tidy categories. Any individual can have many identities: parent, child, professional, fan, taxpayer, and so on.

In the project shown here, students were given a list of designers and design firms who work in different fields (graphic design, architecture, and new media) and who produce different kinds of projects (buildings, websites, products, print, and so on). The list also ranked people according to the size of their firms (from single practitioners to large corporations). The design challenge was to represent these overlapping categories visually, using typography, scale, color, line, and other cues to indicate connections and differences.

Some of the solutions use dots of varying size to indicate scale or to mark points on a conceptual map. Others change the size of the typography to indicate the scale. Overlapping planes or crossing lines were used to indicate areas of overlap. This program can be applied to any collection of objects, from a grocery list to categories of music or art.
Biodiagram: This project asks designers to represent one facet of their lives according to a clear conceptual and visual framework. Form, color, and configuration must grow out of the hierarchy and nature of the content.

Overworked: This diagram reflects the harried schedule of a self-supporting college student, showing his daily routines and errands. Yianni Mathioudakis.

Cosmopolitan: This diagram charts the number of days, months, and years a designer spent residing in places around the globe. Illuminated with photographic, typographic, and diagrammatic details. Meghana Khandekar.

Tweaked: Mapped here are the musical experiences and influences of an international student. Hyda Turanik.
Crystal Clear

Claus Josef Riedel was a pioneering designer of wine glasses. This poster illustrates Riedel's life work, using transparent figures to represent different shapes of glasses.

Gregory May, MFA Studio. Alexa Cheng, visiting faculty.
Rewiring The Spy
Could wikis and blogs prevent a terrorist attack? Inside Washington's new cyberintelligence community.
By Gino Thorpe

Underground Networks Created for the New York Times Magazine by media designer Lisa Strausfeld, this diagram visualizes complex relationships surrounding worldwide terrorist groups.

Produced using the computer language Processing, Strausfeld's diagram conveys the maddening difficulty involved in keeping track of countless potential links and dangers. Lisa Strausfeld, Pentagram.

Charting Trends This seductive map selects and illustrates the world's two hundred most popular websites and classifies them according to categories such as design, news, music, mass marketing, and much more. The graphic is reminiscent of the subway map used in Tokyo, where this piece was designed. Information Architects.