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Although computer simulations and other modeling tools have
assumed a pivotal role in cognitive psychology, their utility
continues to be questioned by some psychologists. This article
presents several examples that illustrate both rewards and po-
tential hazards associated with the simulation approach. Sim-
ulations can provide the formal framework necessary to disam-
biguate new ideas, they can explore the implications of complex
models, and they can predict seemingly counterintuitive find-
ings or uncover hidden relationships. At the same time, care
must be taken to avoid pitfalls that may arise when computer
code inadvertently differs from the intended specifications of a
theory, or when predictions derive not from fundamental prop-
erties of a theory but from pragmatic choices made by the
modeler.

The simulation of human behavior by computers has
become a burgeoning enterprise: As early as 1971, Star-
buck and Dutton compiled a bibliography encompassing
1,921 articles concerned with computer simulations. That
number appears particularly staggering because it dates
from a period in which only a handful of psychologists
were conversant with simulation techniques. During the
two succeeding decades, the number of psychologists
conducting simulations has increased considerably, and
computer simulations are now nearly as common as ex-
periments in some parts of the literature. However, this
trend has not been without opposition, and demands have
recently been made for the complete elimination of mem-
ory models or theoretical constructs of any kind (Wat-
1 kins, 1990). That position, in turn, has not gone unchal-
lenged and has been countered by Hintzman (1991), who
illustrated the utility of models by pointing mainly to
known limitations of human reasoning, and how those
could be circumvented by the proper use of models.

Although stimulated by recent controversy, this article
was not written to continue the debate between modelers
and behavioral empiricists. Instead, the article illustrates
the rewards offered by computer simulations, as well as
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their potential Hazards, by bringing together a number of
relevant cases that both sides of the debate might find
informative.

REWARDS AND PROGRESS

Agreement on what constitutes progress in cognitive
pSychology has remained about as elusive as agreement
about the proper role of models and theories. How should
one report the contributions of simulations when judg-
ments about the tool’s achievements are as diverse as
Jjudgments concerning the tool itself? A criterion for prog-
ress put forward recently (Lewandowsky & Hockley,
1991) may serve well here. It considers the extent to
which theory and data have become interrelated, that is,
the extent to which theory generates data gathering and
the extent to which data, in turn, constrain theory build-
ing. For several areas of inquiry, a historical segregation
between theory and data has been overcome and has
been replaced by the desired constant interaction. By
that criterion, which assigns neither data nor theory the
pivotal role that some scholars would hesitate to accept,
a variety of cases in which simulations played a construc-
tive role can be cited.

Precise Specification of Models

On the surface, it may appear useful to differentiate
between two classes of models: those simple enough to
be understood and tested without formal work and those
sufficiently complex to require computer simulations or
other modeling exercises. Thus, the argument might go,
one can safely ignore simulations if one only sticks to the
former class of models. This reasoning ignores the prob-
lem that even deceptively simple models can benefit from
the rigor of simulations—although often that benefit takes
the form of a simulation revealing the logical incoherence
of a verbal model; the benefit, then, is to science and not
the model’s creator.

An illustration of these interesting, but usually non-
public, elimination and refinement processes is provided
in a dissertation by McDonald (1980) concerning word
recognition. Models of the word recognition process
must account for a large body of literature (reviewed by
Carr & Pollatsek, 1985) and, in particular, the two consis-
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tent findings that a prior related item speeds processing
(semantic priming) and that more familiar words are rec-
ognized more quickly than less familiar words (the word
frequency effect). Early versions of a lexical instance
model (Morton, 1969) proposed that each word is instan-
tiated by its own unique detector, or ‘‘logogen,”” and
visual feature analyzers feed information extracted from
the stimulus to all such detectors in parallel. According to
this model, evidence is accumulated by a detector until
its activation exceeds a threshold and the corresponding
word is recognized. The logogen model accounts for
priming by postulating that semantic characteristics of
previous words are fed back into the detector array, thus
raising the activation of related items above their resting
levels. Frequency effects are implemented in a related
fashion, by postulating that familiar words have lower
thresholds than their low-frequency counterparts.

McDonald (1980) first addressed one of the major dif-
ficulties of the logogen model. Its prediction that stimulus
degradation should affect both priming and word fre-
quency in the same way had appeared to be disconfirmed
when only priming—but not word frequency—was found
to interact with stimulus degradation (Becker & Killion,
1977). However, the impact of these behavioral data on
the logogen model was contingent upon acceptance of an
additive factors interpretation that is known to be prob-
lematical (Luce, 1986, pp. 473-491).! McDonald’s initial
simulations of the logogen model therefore examined the
effect of changes in the feature sampling rate (a simula-
tion mechanism analogous to the presentation of a de-
graded stimulus) on priming and frequency effects. The
observed interactivity in both cases confirmed the trou-
bling implications of Becker and Killion’s results, but did
so without relying on the problematic additive factors
interpretation.

Having confirmed these difficulties, McDonald turmed
to further simulation-driven development of an alterna-
tive verification model that, at a verbal level, had been
specified earlier (Becker, Schvaneveldt, & Gomez,
1973). In the verification model, the output from logogen-
like detectors produced a set of candidate items that was
then edited by a serial verification process. The model
was said to handle the observed additivity between word
frequency and stimulus degradation because word fre-
quency affected the order in which candidates were con-
sidered for verification but not their activation level.
Priming, in contrast, was handled as in the logogen
model, by feeding back information from previous items

1. In the additive factors approach, experimental variables that are
found to interact are assumed to affect the same stage of processing,
whereas those that are additive affect different stages. A major diffi-
culty with this interpretation is that it must assume strict seriality
among processing stages (see Luce, 1986, for further discussion).

VOL. 4, NO. 4, JULY 1993

into the array of detectors, thus boosting the activation of
related words while also producing the observed interac-
tion with stimulus degradation. During simulations of this
initial version, McDonald encountered a difficulty con-
cerning the relative size of the priming and frequency
effects. When the magnitude of the priming activation
boost was adjusted to give reasonable amounts of facili-
tation, only very small frequency effects were obtained.
When the boost was further increased to obtain reason-
able frequency effects, benefits of priming were extin-
guished. Thus, although the model had appeared, at a
verbal level, to account for the data that propelled its
initial development, the simulations revealed otherwise.

A revision of the model restored the correct relative
magnitude of priming and word frequency effects by re-
versing the details of the verification process: The early;
verbal, version had postulated that as sensory evidence
accumulated, candidates were added to the verification
set. When all evidence had been extracted, the set
reached its maximum size and was verified, by bringing
to bear top-down expectations, in order of word fre-
quency. The revised model reversed the growth process
of the verification set into a shrinking process. That is,
upon stimulus presentation, the initial verification set in-
cluded all items in the lexicon, and as sensory evidence
accumulated, implausible candidates were eliminated. In
conjunction with several other modifications (e.g., the
presence of two search sets, one based on semantic re-
latedness and the other on featural evidence), this version
simulated both priming and frequency effects success-
fully. ’

What is to be learned from McDonald’s model devel-
opment process? Perhaps most important, it shows that
simulation of a verbal model can reveal previously hidden
insufficiencies, and that simulations allow for experimen-
tation and modification until known empirical bench-
marks are accommodated. Moreover, in the context of
the criterion for progress given earlier, one must note the
later empirical success of the verification model, when its
predictions were found to correlate with human perfor-
mance for some 900 individual words and pseudowords
(Paap, Newsome, McDonald, & Schvaneveldt, 1982). It
is no small feat to predict responses at the item level, and
it appears doubtful that a verbal model would ever be
able to do so.

Exploration of Novel Ideas or Complex Models

In a related fashion, simulations can also be used to
explore attractive ideas or complex models. Simulations
can be of value in this way either because a seemingly
attractive idea might otherwise be too unconstrained to
support predictions and tests or because a complex
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model may resist analytic exploration even though it is
fully specified mathematically.

Consider a case in which a simple but seemingly un-
tenable idea was revitalized on the basis of simulation
results. How would one represent and recall a serial list
of items A, B, C, and D? Perhaps the simplest way is by
chaining, that is, by pair-wise associations between list
items, which are then used for serial retrieval. An obvi-
ous problem with this scheme is that a break in the chain,
such as the failure to retrieve C, makes all subsequent
items inaccessible for lack of proper cue. The pervasive
recency effect in serial recall, in conjunction with other
damaging data, therefore led to the rapid demise of the
notion of chaining, which remained dormant until a series
of simulations by Lewandowsky and Murdock (1989)
shed new light on the issue. Their distributed memory
model (TODAM; Murdock, 1983) was based on the
chaining notion but, unlike previous incarnations of that
idea, specified how an overt break in the chain (e.g.,
failure to recall C) could nonetheless engender recency.
In this model, cuing of memory would always retrieve an
approximation to the target response (e.g., cuing with B
would retrieve the approximation C’), and even if that
approximation was too ‘‘blurry’’ to support an overt re-
sponse (recall of C), it could still be used as a cue for
further items, thus providing the opportunity for the cor-
rect recall of later list items.

An example of the exploration of complex models can
be found in a recent simulation of a neural network that
confirmed the existence of an alternative to the discrete
*“lexicon’’ (a repository of all known word forms) em-
bodied in most word recognition models. Seidenberg and
McClelland (1989) showed that word recognition and pro-
nunciation—for example, reading of pint or lint—could
take place in the absence of a traditional lexicon of dis-
crete, localized representations. In Seidenberg and Mc-
Clelland’s model, information about words was instead
distributed across many different units (‘‘weights’’ in
neural network parlance) in memory, such that pint and
lint would be represented by the same ensemble of
weights. Because responses were determined by the in-
teraction between these weights and the overall feature
pattern of an item, very different pronunciations could be
learned even for words with a high degree of surface
similarity. Although the mathematics of the network are
well understood (Rumethart, Hinton, & Williams, 1986),
it was a simulation that explored the notion of distributed
representation to the point where it became a satisfactory
alternative to the firmly entrenched lexicon models.

Seidenberg and McClelland’s (1989) word recognition
model also illustrates that simulations can be subject to
public scrutiny and need not be the private enterprise
they are sometimes assumed to be. Besner, Twilley, Mc-
Cann, and Seergobin (1990) analyzed and extended the
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original simulations and concluded that the network was
unable to generalize properly. That is, although the net-
work had learned to pronounce and recognize words
from a large corpus, including some nonwords, Besner et
al. showed that the simulations failed to produce better-
than-chance lexical decision performance on new non-
words and failed to produce various other effects shown
by humans (¢.g., the pseudohomophone effect). Besner
et al.’s article, in turn, was followed by a rejoinder by
Seidenberg and McClelland (1990); in this context, it is
not the full details of the debate that are of interest, but
the fact that it took place, thus underscoring the public
nature of simulations. And lest one think that this type of
debate is confined to esoteric, purely theoretical, ex-
changes between modelers, it should be noted that part
of the response to Seidenberg and McClelland was em-
pirical (Besner, 1990). The close interrelation between
simulations and behavioral experimentation in this exam-
ple fits well within the criterion for progress mentioned
earlier.

Serendipity and Simulations

A widespread opinion among critics is that theories or
simulations somehow stand in the way of serendipitous
discovery: ‘‘The discoveries of penicillin, X-rays, and
America have apparently failed to alert students of mem-
ory to the possibility of serendipitous findings within
their own field’’ (Watkins, 1990, p. 333). Similarly, Lock-
hart (1991) challenged modelers to produce a list of im-
portant phenomena or conceptual advances that owe
their existence to the powers of formal models. It takes
little effort to begin compilation of that list.

Consider an experiment in which subjects learn to as-
sociate pairs of unrelated words, such as grass and city.
It appears to be a matter of common sense to expect that
these associations, like all other memories, will be sub-
ject to forgetting once learning ceases. It thus appeared
rather curious that modeling of some classic paired-
associate learning data with a distributed memory model
required an unreasonably high value of a retention pa-
rameter (Murdock, 1989). That is, in contrast to common-
sense expectations, the model had to presume little or no
forgetting in order to describe the acquisition of long lists
of paired associates. Several experiments have since es-
tablished that, in a continuous recognition paradigm,
there is only limited forgetting of associative information,
and that performance appears to reach asymptote after a
few intervening pairs (Hockley, 1991; Murdock & Hock-
ley, 1989). Two points can be made about these data:
First, they contradict commonsense expectations. Sec-
ond, they would not have been collected had it not been
for a model parameter assuming a peculiar value.
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In a related vein, models can sometimes bridge the gap
between seemingly unrelated sets of observations by
specifying a single underlying process, much as desired
by Estes (1975, p. 271). A particularly compelling exam-
ple involves the relationship between recognition and
classification, reported by Nosofsky (1991). In his exper-
iments, subjects were trained to classify schematic faces
into two categories, using a small set of exemplars. Dur-
ing a subsequent transfer phase, subjects were tested on
a larger set of faces, including both old and new stimuli.
For each stimulus, subjects had to decide to which of the
study categories it belonged (classification) and whether
it had been presented during training (recognition). Fig-
ure 1 shows the empirical relationship between recogni-
tion and classification obtained in Nosofsky’s Experi-
ment 1A.

The low correlation between those two tasks (r = .36)
is apparent from the figure, and might give rise to the
speculation that different, possibly independent, pro-
cesses underlie recognition and classification. However,
it turns out that a common model, based on analysis of
the similarity between the test item and all instances
stored in memory, can simultaneously account for both
recognition and classification. This is shown in the two
panels of Figure 2, which relate the performance pre-
dicted by Nosofsky’s model to the observed data for both
tasks.
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Fig. 1. Observed recognition probabilities as a function of ob-
served classification confidences for the same set of stimuli
(from Nosofsky’s, 1991, Experiment 1A). Note the low appar-
ent correlation between the two tasks. Reprinted by permis-
sion.
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Nosofsky’s (1991) conclusions are noteworthy: ‘‘The
initial scatterplot . . . revealed little relation between
classification and recognition performance. At that lim-
ited level of analysis, one might have concluded that
there was little in common between the fundamental pro-
cesses of classification and recognition. Under the guid-
ance of the formal model, however, a unified account of
these processes is achieved . . .” (p. 9).2

This success is not an isolated occurrence: Metcalfe
(1993) showed that feeling-of-knowing judgments, release
from proactive inhibition, and Korsakoff’s syndrome can
all be described by a common process embodied in her
composite holographic memory model. Interestingly,
that success derived from a property of the model initially
deemed to be a serious problem. Metcalfe discovered, by
way of simulation, that the storage of a large number of
items increased the variance® of the common memory
trace so rapidly—especially if the items were related to
each other—that the system soon reached a saturation
point. Exploration of possible solutions led to the devel-
opment of a monitoring and control mechanism, whereby
the weight given to each new item depended on its antic-
ipated contribution to an increase in overall variance.
The monitoring part of that mechanism, which assessed
the novelty of a to-be-encoded event, turned out to pro-
vide a natural account of some of the intricacies of peo-
ple’s feeling-of-knowing judgments (e.g., that items pro-
ducing errors of commission are given higher familiarity
ratings than those leading to omissions, that priming of
cues increases familiarity ratings whereas priming of tar-
gets does not). Further simulations revealed that the
same monitoring and control mechanism enabled the
model to show buildup and release from proactive inhi-
bition, and that the model behaved much like a Korsa-
koff’s patient when the mechanism was disabled. Thus,
by using simulations to explore the implications of a po-
tentially troublesome property of her model, and by pro-
posing a solution on the basis of further simulations, Met-
calfe (1993) was able to provide a common theoretical
underpinning for feeling-of-knowing judgments, proac-
tive inhibition, and Korsakoff’s syndrome. It is unclear
how an account relating phenomena as diverse as these

2. It must be noted that these two examples (Murdock & Hockley,
1989; Nosofsky, 1991) involved application of the models not by simu-
lation but by analytic fit. It is important to bear in mind that simulations
differ from analytic models mainly in the way in which predictions are
generated, and that both tools can be applied to similar problems in
similar ways. A more extensive comparison of these two approaches
and an exploration of related issues can be found in Gregg and Simon
(1967). Complete introductions to simulation techniques are provided
by Lehmann (1977) and Dutton and Starbuck (1971).

3. Variance here refers to the sum of the squared activation values
of all elements, or weights, in the memory trace.
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Fig. 2. Observed and predicted classification probabilities (left panel) and observed and predicted recognition
probabilities (right panel). Perfect prediction would correspond to all points falling on the diagonal; the model
approaches that closely, with more than 90% of the variance accounted for in both panels. From Nosofsky’s

(1991) Experiment 1A. Reprinted by permission.

three could be provided by experimentation and verbal
theorizing alone.

HAZARDS AND SETBACKS

Having considered several cases in which simulations
offered new insights into cognitive processes or engen-
dered the collection of new behavioral data, we must now
turn attention to potential pitfalls awaiting the simulation
modeler. Three principal classes of problems can be iden-
tified, concerning the relation between computer pro-
gram and theory, the match between real-world situa-
tions and simulated environments, and the nature of
simulation results.

Not-So-Irrelevant Specifications

Implementation of an existing theory in a simulation—
as described earlier with the verification model—is a
step-by-step process that often involves pragmatic deci-
sions to bridge the gap between the loose level of verbal
theorizing and the tight level of description required for a
program. These pragmatic decisions, in turn, may lead to
inadvertent discrepancies between theory and simulation
(Frijda, 1971; Reitman, 1965, p. 25). This irrelevant-
specification problem is potentially serious because the
simulation results no longer speak to properties of the
theory.

The nature of the problem renders it difficult to find
relevant published examples, so I discuss my own work
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as an illustration here. Consider the deblurring stage of
retrieval that is common to most neural networks and
distributed memory models. Typically, the output from
the model is compared with a set of possible responses
and the best match (i.e., smallest discrepancy between
output and response) is chosen (Hinton & Shallice, 1991;
Lewandowsky & Murdock, 1989; Seidenberg & McClel-
land, 1989). Not only is there some uncertainty concern-
ing how that match should be measured (Goebel & Le-
wandowsky, 1991), but the comparison process also
introduces a particularly pernicious problem that is usu-
ally resolved by the programmer in an ad hoc manner:
What is the ‘‘best’’ match if two of the possible responses
are identical? In the program, the comparison process
must be serial, and a pointer is updated whenever the
best match is improved by the next item. This must in-
volve a conditional statement with either a < or a =<
comparison operator. If the former is used, the model will
respond with the first of the two identical items to be
compared. If the latter is used, the response will be the
item that happens to be compared second. This matters
only in the unique situation when (a) a serial list is to be
recalled by probing from one item to the next, (b) that list
contains a repeated item, and (c) the model’s output is
compared only to the remaining list items. These condi-
tions are met when the Lewandowsky and Murdock
(1989) chaining model is presented with a list suchas A B
C D C E. With the < operator, the model can recall all
items on the list, similarly to what human subjects would
do. With the =< operator, the model recalls A B C E but
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can never produce the intervening D and C. The theory
(TODAM; Murdock, 1983) is mute on the choice of op-
erator, stating only that the ‘‘best match’” should be ob-
tained.

It has been argued that this type of irrelevant specifi-
cation presents less of an issue in contemporary unified
theories, whose larger scope comes closer to specifying
all the details of the simulation, and which from the mo-
ment of their inception are implemented in a simulation
program (Newell, 1990, p. 23). Hence, simulations of uni-
fied theories are not written to implement a model;
rather, the model is the simulation (see also Feigenbaum,
1963). However, even then, irrelevant specifications can
be avoided only if the model is communicated and dis-
cussed exclusively by referring to the programming code.
Any verbal description, no matter how faithful and pre-
cise, likely opens the door to irrelevant specifications. At
best, one can follow Frijda’s (1971) advice to ‘‘describe
the relevant processes unambiguously by naming the
subroutines concerned, by stating their precise input and
output conditions, the conditions of their activation, and
the transformations they achieve’ (p. 612).*

Overparameterization

A related difficulty arises when the simulation is inad-
vertently provided with *‘friendly’’ input conditions. Re-
sults may then derive from these extraneous conditions
as opposed to fundamental properties of the theory.

To illustrate, consider Rumelhart and McClelland’s
(1986) neural network that simulated children’s acquisi-
tion of past tense. That acquisition process consists of
two distinct phases: During the first phase, children use a
variety of correct past tense forms for both regular (walk
— walked) and irregular (go — went) verbs. During the
second stage, children tend to overregularize, leading To
forms such as go — goed or eat — eated. It is only later
that children reacquire the ability to produce the correct
past tense for both regular and irregular verbs. The top
panel of Figure 3 shows Rumelhart and McClelland’s
simulation results, which resemble the linguistic pro-
cesses observed in children.

That simulation was thoroughly scrutinized by Pinker
and Prince (1988). Their critique consisted of a concep-
tual component, not relevant here, and an analysis of the
input conditions for Rumethart and McClelland’s simula-
tions, which is reproduced in the bottom panel of Figure
3. The panel shows the proportion of input items consist-

4. It has been argued that, even with greatest care, final identifica-
tion of the proper model is impossible because *‘of the poverty of the
data relative to the complexity of the implementation level theories’
(Anderson, 1990, p. 21). An opposing view holds that the existing data
base suffices to constrain theory building (Newell, 1990).
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Fig. 3. Analysis of Rumelhart and McClelland’s (1986) network
simulating children’s acquisition of past tense. The top panel
shows simulated acquisition of past tense for regular and irreg-
ular verbs (adapted from Rumelhart & McClelland, 1986). The
bottom panel shows proportion of irregular verbs in the input
corpus (simulation) together with proportion actually found in
children’s vocabulary (idealized data). Data represent average
of the values reported by Pinker and Prince (1988, Table 1).

ing of irregular verbs. For the first 10 simulation trials,
80% of the input was irregular, compared with 20% on the
remaining trials. Comparison of the panels shows that the
simulated drop in performance for irregular verbs coin-
cided with that change in input conditions. Pinker and
Prince concluded that ‘‘the model’s shift from correct
to overregularized forms does not emerge from any en-
dogenous process; it is driven directly by shifts in the
environment’’ (p. 138). Moreover, these simulated envi-
ronmental shifts did not correspond to the actual compo-
sition of children’s vocabulary, which tends to be evenly
divided into regular and irregular verbs.

One must hasten to add that Rumelhart and McClel-
land (1986) chose their input conditions to resemble the
presumed learning environment experienced by children:
The initial set of stimuli contained the highest frequency
verbs in English (which happen to be mostly irregular),
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and the subsequent expanded set consisted mainly of me-
dium-frequency items (fewer of which are irregular).
Hence, the environmental shift was an accidental—but
ultimately critical—by-product of otherwise plausible as-
sumptions about children’s linguistic environment.

The Nature of Simulation Results

What kind of results can be expected from a simula-
tion? Because a computer program is, by definition, en-
tirely deterministic, can we ever be truly surprised by an
unexpected outcome, as might happen in behavioral ex-
periments? Early opinions denied this possibility, prefer-
ring the view that one can get out of a simulation only
what the programmer has put in (Reitman, 1965, p. 15).
The counterargument, that simulations are capable of
producing truly counterintuitive results (Simon, 1969, p.
15), has been supported by recent simulations that have
generated novel insights in nontrivial ways. Consider, for
example, Seidenberg and McClelland’s (1989) network
model, in which it had been entirely unclear, prior to
conducting the simulation, whether the proper pronunci-
ation patterns could be learned.

Although potentially valuable, the possibility of unex-
pected results opens the door for Bonini’s paradox,
which arises when the simulation turns out to be no easier
to understand than the real-world processes it was sup-
posed to illustrate (Dutton & Starbuck, 1971). It has been
argued that this problem is endemic in current neural
networks, and that they therefore cannot provide true
explanations for the processes they purport to describe.
(McCloskey, 1991, examines the issue in greater depth
than is possible here.)

It appears, then, that simulations can be criticized ei-
ther for not producing unforeseen results or, if they do,
for being inscrutable. In response, one must point to the
opportunity for experimentation afforded by successful
simulation models (Dutton & Starbuck, 1971). McClos-
key (1991) offered an analogy to animal models of human
cognition: Neither a simulation nor an animal model in
itself is an explanation, but both can point to explanations
by allowing experimental manipulations not possible with
human subjects.

Consider, as an illustration, Hinton and Shallice’s
(1991) *‘lesion’’ experiments involving an attractor net-
work. Briefly, their net was trained to map a set of or-
thographic representations into semantic features, so that
presentation of a spelling pattern would activate the cor-
rect ““word’’ at a semantic output level. Subsequent *‘le-
sioning’’ variously involved the removal of units, the
contamination of weights with noise, or the setting to
zero of a set of connections. Among the most interesting
findings was the persistent co-occurrence of visual (cat
read as mat) and semantic (peach — apricot) errors upon
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lesioning of virtually any part of the same semantic path-
way. Hinton and Shallice identified this result to reflect a
general ‘‘breakdown characteristic of a network contain-
ing attractors when lesioned in various places’’ (p. 89).
That generality, in turn, elegantly explained why this mix
of errors (visual vs. semantic) remains remarkably con-
stant even though other performance deficits show great
variability across patients. Further experimentation es-
tablished that the attractor net predicted several other
intricacies of the error pattern that had previously es-
caped explanation by the standard dual-route models
(e.g., that of Marshall & Newcombe, 1973).

CONCLUSIONS

This article cites examples that support the following
conclusions. (1) Computer simulations have contributed
to cognitive psychology by providing precise formula-
tions for new ideas and verbal models and by exploring
complex theories. (2) Simulations are subject to replica-
tion, inspection, and scrutiny in ways similar to tradi-
tional experiments. (3) Simulations can uncover relations
between seemingly disparate findings. (4) Simulations al-
low for experimentation that may not be possible with
human-subjects.

Yet several hazards and limitations must be recog-
nized: (1) Inadvertent discrepancies between a theory
and its implementation in a simulation may exist. (2) Care
must be taken to avoid ‘‘friendly’’ input that gives rise to
the desired result. (3) Simulation results cannot always
substitute for a conceptual level of explanation.
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