CHAPTER 21

LONGITUDINAL METHODS

Siek-Toon Khoo, Stephen G. West, Wei Wu, and Oi-Man Kwok

The previous chapters in this volume have focused
on the measurement of participants using multiple
methods, multiple measures, and in multiple situa-
tions. In this chapter the focus shifts to the measure-
ment of the same set of participants on multiple
occasions, ideally using the same (or equivalent)
measurement instruments. This focus on multiple
occasions does not fundamentally alter the applica-
tion of basic concepts and approaches presented in
previous chapters (see Eid, chap. 16, this volume; Eid
& Diener, chap. 1, this volume). What is new in this
chapter is that longitudinal designs explicitly deter-
mine the temporal ordering of the observations. This
temporal ordering of observations provides an
enhanced ability to elucidate stability and change in
individuals over time, to study time-related processes,
and to establish the direction of hypothesized causal
relationships (Dwyer, 1983; Singer & Willett, 2002).
Longitudinal studies are becoming increasingly
prominent in several areas of psychology including
clinical, community, developmental, personality,
and health. For example, Biesanz, West, and Kwok
(2003) found that 24% of the studies published in
the 2000 and 2001 volumes of the Journal of Person-
ality: Personality Process and Individual Differences
section and the Journal of Personality included two
or more waves of data collection. In the area of psy-
chology most focused on issues of stability and
change, we found that 32% of the articles in Devel-
opmental Psychology in 2002 met these minimum

criteria for a longitudinal study of two waves of
data collection. This compares to only 15% of the
articles published in 1990.

A more in-depth review focused on the longitu-
dinal studies in the 2002 volume of Developmental
Psychology provides a glimpse of current practice
(see also Morris, Robinson, & Fisenberg, chap. 25,
this volume). The duration of studies ranged from
12 weeks to 28 years. Approximately 25% of the
studies collected only two waves of data, whereas
approximately 25% of the studies reported 6 or
more waves of data collection, with one study col-
lecting more than 50 waves of data. Measures
included standardized measures of ability and intel-
ligence; self-, peer, parent, and teacher reports; rat-
ings and counts of behaviors by trained observers;
peer nominations; and physical measures such as
weight and heart rate. Although most of the studies
included a substantial core set of measures that
were administered at each wave, some studies used
different measures at each measurement wave, pre-
cluding the examination of change over time. The
majority of articles reported traditional
correlation/regression analyses or analysis of vari-
ance. Collins and Sayer (2001), McArdle and Nes-
selroade (2003), and Singer and Willett (2002) have
highlighted the potential advantages of newer
approaches to the analysis of longitudinal data, yet
approaches such as structural equation modeling
(approximately 10%) and growth modeling and
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examination of growth trajectories (approximately
15%) continue to represent a distinct minority of
longitudinal studies.

This chapter considers a number of unique
issues that arise when measurements are taken on
multiple occasions. We begin with a consideration
of some desiderata of measurement from cross-sec-
tional research and consider how they may apply in
longitudinal research. We then consider three dif-
ferent longitudinal models: (a) autoregressive mod-
els that focus on the stability of participants’
relative standing on a construct over time; (b)
latent trait—state models that partition the variance
in measured constructs into relatively stable (trait)
and measurement occasion specific (state) compo-
nents; and (c) growth curve models that estimate
individual growth trajectories. Finally, we consider
these longitudinal models in light of measurement
concerns and indicate some methods through
which these concerns can be addressed.

SOME DESIDERATA FOR GOOD
MEASUREMENT: LESSONS FROM CROSS-
SECTIONAL RESEARCH

Sources on traditional and modern approaches to
measurement (Crocker & Algina, 1986; Embretson
& Reise, 2000; Lord & Novick, 1968; McDonald,
1999; West & Finch, 1997) have emphasized issues
that arise in narrow windows of time that character-
ize cross-sectional and short-term (test—retest) stud-
ies. These approaches have developed several
desiderata for good measurement; three are pre-
sented following. We also begin to consider how
these desiderata may need to be extended for longi-
tudinal studies. In this section we will use the
framework of classical test theory and assume that
measures have been collected on a numerical scale.

Reliability

In classical test theory the observed score on a
measure (Y) can be partitioned into two parts: true
score (T) and error (e). In symbols, this is
expressed as Y = T + e. T can be defined as the
mean of a very large number of independent meas-
urements. e is assumed to be random and inde-
pendent of the value of the true score. The
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reliability coefficient represents the proportion of
the variance in the observed Y scores (O‘ZY) that is
true score variance (0%,),

Pyy =

SNIEN

Reliability is an index of the dependability of the
measurement. Two measures of reliability are cur-
rently widely reported in the literature, coefficient
alpha and the test-retest correlation.

Coefficient alpha. When the data are collected on a
single measurement occasion, Cronbach’s (1951)
coefficient alpha (@) is typically reported. Concep-
tually, & can be thought of as the correlation
between two equivalent scales of the same length
given at the same time.

Coefficient alpha has several little-known prop-
erties that may limit its usefulness in application
(Cortina, 1993; Feldt & Brennan, 1989; Schmitt,
1996). First, o assumes that all items are equally
good measures of the underlying construct, a con-
dition known as essential tau equivalence (see sec-
tion on homogeneity for a fuller description). If
some items should ideally be weighted more heavily
in estimating the true score, then ¢ will underesti-
mate the reliability. Second, ¢ is dependent on test
length. For example, if a 10-item scale had an o =
.70 and another exactly parallel set of 10 items
could be identified, then « for the 20-item scale
would be .82. Third, o addresses sources of error
that result from the sampling of equivalent items
and potential variability within the measurement
period (e.g., within-test variability in level of con-
centration). It does not address error resulting from
sources that may vary over measurement occasions
(e.g., Py‘_y’_,, daily changes in mood). Fourth, a high
level of o does not indicate that a single dimension
has been measured. For example, Cortina showed
that if two orthogonal dimensions underlie a set of
items, even if the intercorrelations between items
within each dimension are modest (e.g., = .30), &
will exceed .70 if the scale has more than 14 items.
Even higher values of a will be achieved if the
dimensions are correlated. Finally, o may differ for



measures collected during different periods of a
longitudinal study. Both the variance in the true
scores and the measured scores may change over
time so that o can change dramatically. A measure
of 1Q collected on a group of children at age 4 will
typically have a lower o than the same measure col-
lected on the children at age 10. In later sections,
we describe alternative approaches that address sev-
eral of these issues as well as others that arise in
longitudinal measurement contexts.

Test-retest correlations. A second method of esti-
mating reliability is to calculate the correlation
between the scores on the same set of items
taken at two points in time. Test-retest
approaches assume that (a) the participants’ true
scores do not change on the measure during the
(short) interval between Time 1 and Time 2 and
that (b) responding to the item at Time 1 has no
effect on the response at Time 2 (e.g., no mem-
ory for prior responses on an ability test). Green
(2003) has recently developed a test-retest ver-
sion of . Test-retest & eliminates sources of
error that change across measurement occasions
(e.g., daily mood changes), but otherwise shares
the assumptions and properties of traditional o
described earlier.

In longer-term studies, the interpretation of the
test-tetest correlation changes. It can no longer be
assumed that there has been no change in the par-
ticipants’ true scores or that all participants change
at the same rate. Children and adults change over
time in their abilities, personality traits, and physi-
cal characteristics such as height and weight. In this
case the test-retest correlation is an estimate of the
stability of the measure—the extent to which the
(rank) order of the participants at Time 1 is the
same as the order of the participants at Time 2. Oth-
erwise stated, the level of the measure (e.g., height)
may change over time, but stability is shown to the
degree that participants’ amount of change is pro-
portional to their initial level on the measure.

Homogeneity (Unidimensionality)
Interpretation of measures is greatly simplified if
the measure assesses a single dimension (underly-
ing factor). For example, imagine that a measure of
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college aptitude were developed. Unbeknownst to
the test developers the items reflect a major dimen-
sion of IQ and a secondary dimension of conscien-
tiousness. These two dimensions have only a
minimal correlation. Both dimensions may predict
good performance in many classes. But the consci-
entiousness dimension may be a far better predictor
of performance in a history course in which large
amounts of material must be regularly learned. In
contrast, IQ may be a far better predictor of per-
formance in a calculus course. By separating the
two dimensions, we can gain a far greater under-
standing of the influence of the two dimensions in
performance in different college classes. Indeed, the
interpretation of the body of research associated
with several classic measures of personality has
been difficult because of the existence of multiple
dimensions underlying the personality scale (see
Briggs & Cheek, 1986; Carver, 1989; Neuberg,
Judice, & West, 1997 for discussions). Finch and
West (1997) discussed testing of measures in cross-
sectional studies that are hypothesized to have more
complex, multidimensional structures.

In longitudinal research, these issues only
become more difficult because dimensions within a
scale may change at different rates. For example,
Khoo, Butner, and Ialongo (2004) found that a pre-
ventive intervention led to a linear decrease on a
dimension of general aggression, but no change on
a secondary dimension of indirect aggression
toward property during the elementary school
years. Such findings make it necessary to consider a
more complex measurement structure in assessing
longitudinal effects on the aggression scale.

The most commonly used method of assessing
the dimensionality of measures in cross-sectional
studies is confirmatory factor analysis (see Eid, Lis-
chetzke, & Nussbeck, chap. 20, this volume; Hattie,
1985 for a review). In this approach, the researcher
hypothesizes that a specific measurement model
consisting of one or more latent factors underlies a
set of items. The measurement model is then tested
against data with two aspects of the results of the
test being of special interest. (a) The procedure pro-
vides an overall ¥? test (likelihood ratio test) of
whether the hypothesized model fits the observed
covariances between the items. If the value of the
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obtained y? is not significant, then the hypothesized
model fits the data. For large samples, the y? test
may reject even close-fitting models so that various
fit indices such as the RMSEA and the CFI, which
are less dependent on sample size, may be used to
assess whether the model is adequate. (b) The
strength of the relationship between the factor and
each item (A = factor loading) is estimated. In some
models, the As can be expressed in standardized
form, in which case they represent the correlation
between the latent factor and each item. Alterna-
tively, one of the items may be treated as a reference
variable (A = 1). The strength of each of the other
loadings is interpreted relative to the reference vari-
able, values of A >1 indicate a relatively larger
change, and values of A < 1 indicate a relatively
smaller change in the measured variable correspon-
ding to a one-unit change in the latent factor (see
Steiger, 2002).

Confirmatory factor analysis can also be used to
estimate coefficient alpha. We noted earlier that
coefficient alpha assumes that all measures are
equally good measures of the underlying construct.
This assumption means that the factor loadings of
all the items on the factor are equal, known as the
assumption of essential tau equivalence. Comparing
the fit of a model in which the As are constrained to
be equal, versus an alternative model in which the
As are freely estimated, tests essential tau equiva-
lence. If the fit of the two models does not differ,
then the assumption of essential tau equivalence is
reasonable. McDonald (1999) and Raykov (1997)
provide procedures for estimating o both when the
assumption of essential tau equivalence is and is
not met. Later in this chapter we will extend the
idea of testing of assumptions about measurement
structure to longitudinal data. To the extent meas-
ures have the same structure at two (or more) time
points, the results of analyses using the measures
become more interpretable.

Scaling

Stevens (1951) proposed an influential classification
of measurement scales. Beginning with the lowest
level in the hierarchy, nominal scales assign each
participant to an unordered category (e.g., marital
status: single, married, divorced, widowed). Ordinal
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scales assign each participant to one of several
ordered categories (e.g., clothing size: 1 = small, 2 =
moderate, 3 = large). Interval scales assign partici-
pants a number such that a one-unit difference at
any point on the scale represents an identical
amount of change (e.g., a change from 3 to 4
degrees or from 30 to 31 degrees represents the
same change in temperature on the Celsius scale).
Finally, ratio scales share the same equal interval
property as the interval scale, but in addition have a
true 0 point where O represents absence of the
measured quantity (e.g., height in centimeters).

Stevens originally argued that the level of meas-
urement limits the type of statistical analysis that
may be performed. This position is potentially dis-
turbing because many measures in psychology may
not greatly exceed an ordinal level of measurement.
Indeed, Krosnick and Fabrigar (in press) have
shown that labels used to represent points on Lik-
ert-type items often do not come close to approxi-
mating equal spacing on an underlying dimension.
On the other hand, several authors (e.g., Cliff,
1993; McDonald, 1999) have noted that for t-tests
and analysis of variance, whether the measurement
scale is ordinal, interval, or ratio, makes only a
modest difference in the conclusions about the exis-
tence of differences between groups, so long as the
assumptions of the analysis (e.g., normality and
equal variance of residuals) are met. Similarly, for
linear regression analysis or structural equation
modeling, the level of measurement also does not
have a profound effect on tests of the significance of
coefficients. These results occur because monotonic
(order preserving) transformations typically main-
tain a high correlation between scores on the origi-
nal and transformed scales. Often, ordinal
measurement will be “good enough” to provide an
adequate test of the existence of a relationship or
group difference even with statistical tests originally
designed for interval level data.

However, if we have hypotheses about the form
of the relationship between one or more independ-
ent variables and the dependent variable, ordinal
measurement is no longer “good enough.” Longitu-
dinal analyses testing trend over time require inter-
val level measurement. The origin and units of the
scale must be constant over time; otherwise, the test



of the form of the relationship will be confounded
with possible effects of the measuring instrument.
When standard statistical procedures designed for
interval-level data are used with ordinal-level data,
estimates of parameters of the growth model will be
seriously biased. Special methods designed explic-
itly for ordinal-level data and large sample sizes are
required (Mehta, Neale, & Flay, 2004).

Changes in the origin or units of the scale can
happen because raters explicitly or implicitly make
normative judgments relative to the participant’s
age and gender.! Consider the trait physically
active. Informants may rate the second author as
being very physically active—a rating of 8 on a 9-
point scale ranging from “not at all” to “extremely”
active at age 25 and then again at age 50. Yet, physi-
cal measures of activity (e.g., a pedometer) may
show twice as much physical activity at age 25 as at
50. In effect, such ratings may be “rubber rulers”
that correctly describe the standing of the individ-
ual relative to a same age comparison group. How-
ever, when changes occur in either the origin or the
units of the scale, clear interpretation of the results
of longitudinal analyses focused on the form of
change is precluded. These problems do not charac-
terize all longitudinal studies. Physical measures
(e.g., height, blood pressure) and many cognitive
measures provide invariant measurement at the
interval level. Some rating scale measures may
approximate interval-level measurement and be
suitable for short-term longitudinal studies. But,
few investigators consider this fundamental issue—
the origin and units of the measure must be con-
stant over time. Such invariance is fundamental in
interpreting the results of longitudinal studies of
change. We revisit this issue later in the chapter.

THREE LONGITUDINAL MODELS

At this point it would be beneficial to introduce
several of the most common new longitudinal mod-
els for analyzing stability and change using contin-
uous latent variables. These models include
autoregressive models, trait—state models, and
growth curve models.

Longitudinal Methods

Examining Stability: Autoregressive Models
Autoregressive models are used to examine the sta-
bility of the relative standing of individuals over
time. Figure 21.1 illustrates an autoregressive
model for a three-wave data set. In this data set
(Biesanz, West, & Millevoi, 2004), 188 college stu-
dents were assessed at weekly intervals on a meas-
ure of the personality trait of conscientiousness
(Saucier & Ostendorf, 1999). According to Saucier
and Ostendorf, conscientiousness is comprised of
four closely related facets: orderliness, decisiveness,
reliability, and industriousness. At each time period,
we estimated the latent construct of conscientious-
ness. In the model presented in Figure 21.1, the
factor loading of each facet was constrained to be
equal over time so that the units of the latent con-
struct would be the same at each measurement
wave. Orderliness serves as the marker variable for
the construct (A = 1). As for the other facets range
from .62 to .67.

In the basic autoregressive model, the scores on
the factor at Time t only affect the scores on the
factor at Time t +1. If there is perfect stability in
the rank order of the students on the factor from
one time period to the next, then the correlation
will be 1.0, whereas if there is no stability, then the
correlation will be 0. In the present example, there
is considerable stability in the conscientiousness
factor: the unstandardized regression coefficients
are .78 (correlation = .85) for Week 1 to Week 2
and .84 (correlation = .88) for Week 2 to Week 3.
These stabilities greatly exceed the corresponding
simple test-retest correlations of .63 and .65,
respectively.

Multiindicator autoregressive models have two
distinct advantages over simple test-retest correla-
tions. First, the model partitions the variance asso-
ciated with the four indicators (facets) at each time
into variance associated with the factor of conscien-
tiousness and residual variance so that the stability
coefficients are not attenuated by measurement
error. Second, part of the residual variance may be
due to a systematic feature of the facet (uniqueness)
that is not shared with the latent construct of con-
scientiousness. Correlating the uniquenesses over

IFor example, Goldberg’s (1992) measure of the Big Five personality traits explicitly instructs informants to rate the participant relative to others of

the same age and gender.
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FIGURE 21.1. Autoregressive model.

each pair of time periods removes any influence of
the stability of these systematic components of the
residual. Otherwise, the estimate of the stability for
the conscientiousness factor would be confounded
by these unique components associated with each
of the facets.
We estimated three alternative models to illus-
trate features of the model depicted in Figure
21.1. First, we investigated the effect of correlat-
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ing the uniquenesses. Model (a), which included
the correlated uniquenesses, showed a substan-
tially better fit to the data, }*(40) = 35.1, ns,
RMSEA = .00, than Model (b), in which the corre-
lations between the uniquenesses are deleted,
x%(52) = 500.2, p < .0001, RMSEA = .22). An
RMSEA of .05 or less is typically taken as evi-
dence of a close-fitting model. This result indi-
cates that the correlated uniquenesses need to be



included in the model. Second, we investigated
the effect of constraining the factor loadings to be
constant over time. Model (c), which is portrayed
in Figure 21.1, also resulted in an acceptable fit to
the data, ¥2(46) = 37.0, ns, RMSEA = .00. The dif-
ference in fit between Models (a) and (c) may be
directly compared based on their respective y? and
df values using the likelihood ratio test (Bentler &
Bonett, 1980), ¥%(6) = 1.9, ns. Given that the fit
of the two models to the data does not differ,
Model (c) is preferred both because it has fewer
parameters (parsimony) and more importantly,
because it simplifies interpretation by guarantee-
ing that the conscientiousness construct has the
same units at each measurement wave.
~ Cross-lagged autoregressive models may be
used to investigate the ability of one longitudinal
series to predict another series. For example,
Aneshensel, Frerichs, and Huba (1984) measured
several indicators of illness and several indicators
of depression every 4 months. The two constructs
were modeled as latent factors. Moderate stabilities
were found for both the illness and depression
constructs. The level of depression at Wave t con-
sistently predicted the level of illness at Wave t + 1,
over and above the level of illness at the Wave ¢t. In
a similar study, Finch (1998) found that social
undermining consistently predicted negative affect
1 week later over and above the level of negative
affect the previous week. Such lagged effects show
both association and temporal precedence, provid-
ing support for hypothesized direction of the
causal relationship between the two variables (e.g.,
depression — physical illness). Joreskog (1979)
and Dwyer (1983) presented several useful vari-
ants of the basic autoregressive model for longitu-
dinal data. Of importance, clear interpretation of
the findings of these models assumes there is not
systematic change in the level of the series of
measures (growth or decline) for each individual
over time (Willett, 1988). Curran and Bollen
(2001) and McArdle (2001) have proposed models
that combine growth and autoregressive compo-
nents to address this issue.

Longitudinal Methods

Trait-State Models
Many important psychological phenomena (e.g.,
moods) appear to be influenced both by an individ-
ual’s chronic level (trait) as well as temporary fluc-
tuations from that chronic level (state). Latent
trait-state models (Steyer, Ferring, & Schmitt,
1992; Steyer, Schmitt, & Eid, 1999; see Figure
21.2) partition each measure collected at each
measurement occasion into three components. First
is a component that represents the trait construct
measured at a specific time point (denoted Time 1,
Time 2, and Time 3 in Figure 21.2). This compo-
nent is further partitioned into (a) a latent trait fac-
tor that characterizes the person’s stable general
level on the construct of conscientiousness
(denoted as Consci in Figure 21.2) and (b) a latent
state residual that characterizes temporary (state)
effects on the person associated with each measure-
ment wave. Second, the method factor represents
the stable influence of the specific measure (here,
the measure of each facet of conscientiousness,
denoted Order, Decis, Reliab, Indust, respectively).
Third, as in previous models, another component
reflects random measurement error.

The latent state-trait model shows a good fit to
the conscientiousness data, ¥%(39) = 31.87, ns,
RMSEA = .00). The clear partitioning of the
observed scores on the measure into trait, state,
measure, and error variance components provides a
strong basis for predicting external criteria. For
example, the relatively pure measure of the trait of
conscientiousness that is estimated can be used to
predict conscientiousness-related behaviors such as
class attendance or worker productivity. The latent
trait-state model can also partition the total amount
of variance in the observed scores into trait, state,
measurement method, and error variance compo-
nents (see Steyer et al., 1992). In the present exam-
ple, 42% of the variance in the observed scores is
associated with the stable latent trait factor for con-
scientiousness.? Or, if the researcher were interested
in situational effects on conscientiousness (e.g., if
midterm exams were given prior to the Week 2
measurement), the proportion of the total variance

The instructions emphasized answering based only on the past week’s behaviors.
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RMSEA = .000

1.00

.66
Timel 67

.62

1.0

1.00

.66

Consci Time2

1.01 57

.62

91
1.00

.66

Time3 67

62

Orderliness1
. .00
Decisiveness1 @
Reliability1 «— 9
1.08
Industriousness1
.00
Orderliness2 N\ @
/
.83
Decisiveness2
Reliability2
eliability. ‘ 1,00
Q .09 ]
Industriousness2 v Reliab
/)
Orderliness3
. 1.00
Decisiveness3
1.26
Reliability3 Indust
1.21
Industriousness3

FIGURE 21.2. Latent state—trait model. Consci is the conscientiousness latent construct; Order, Decis
(decisiveness), Reliab (reliability), Indust (industriousness) represent the four specific facets of

conscientiousness.

in the observed scores associated with the latent
state residuals could be computed. Steyer et al.
(1992) discussed a variety of potential methods of
partitioning the variance to produce estimates of
several diverse forms of reliability and stability that
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may be useful in different research contexts. Steyer
et al. (1992) and Kenny and Zautra (2001) com-
pared several variants of the latent trait-state model.
Although the basic latent trait-state model has
several important strengths, it also has three limita-



tions. First, like the autoregressive model, the basic
state—trait model focuses only on the relative order-
ing of a set of individuals. Clear interpretation of
findings requires there is not systematic growth or
decline for each individual over time. Otherwise,
more complex models that combine growth and
trait-state components are required (Tisak & Tisak,
2002). Second; the temporal ordering of the obser-
vations is not represented in the analysis. Otherwise
stated, the data from any two time periods (e.g., 2
and 3) can be exchanged without affecting the fit or
any important features of the model. Third, like
multitrait-multimethod models (Eid, 2000; Kenny
& Kashy, 1992), latent trait—state models can be
difficult to fit with many data sets. Data sets with
small state components or small method compo-
nents can lead to improper solutions. In general,
adding more time periods, more measures, and
more participants appears to improve estimation.
Steyer et al. (1999) present approaches that may be
used when there are problems in estimation.

Growth Curve Modeling
In longitudinal studies with three or more measure-
ment waves, growth curve modeling can provide an
understanding of individual change (Laird & Ware,
1982; McArdle & Nesselroade, 2003; Muthén &
Khoo, 1998). Researchers may study individual
growth trajectories and relate variations in the growth
trajectories to covariates that vary between individu-
als. They may also get better estimates of true growth
by studying the effects of covariates that vary over
time within individuals. We use the hierarchical mod-
eling framework here to describe the models.
Conceptually, growth curve modeling has two
levels denoted as Level 1 (within individuals) and
Level 2 (between individuals). At Level 1 we
describe each individual’s growth using a regression
equation. We focus here on the simplest model,
linear growth. With linear growth we express the
measure Y, of an individual i at time t as the sum of
the individuals linear growth plus a residual €, that
represents random error at occasion t,

Y =a,+Bx,+e, ,t=12,..T €Y)

Longitudinal Methods

In Equation (1), x,, is the time-related variable
such as age, measurement wave, or the elapsed time
following the occurrence of an event (e.g., surgery).
Note that x,; has two subscripts, t and i, indicating it
varies both over measurement occasions and across
individuals. The intercept , represents the predicted
level of Individual i on the measure when x = 0.
When time is scaled so that the first measurement
occasion equals 0, @; may be interpreted as the indi-
vidual “initial status” or level on Y at the beginning
of the study. The slope j, represents the individual
growth rate, the change in Y per unit of time. The
individual intercept ¢, and the individual slope f3,
form a pair of growth parameters that characterize
the individual trajectory. Figure 21.3 shows hypo-
thetical linear growth curves of three individuals on
a variable Y over time. Note that the individuals start
at different levels (different o;s) and grow at different
rates (different fs). Other time-varying covariates
may be added as predictors to the Level 1 equation.

For example, suppose we collected daily meas-
ures of stressful events w,; and well-being Y, in each
patient for 10 days immediately following minor
surgery. We can add the time-varying covariate w,,
to Equation (1). For patient i, we now have

Y =a,+Bx,+rw,+e, ,t=12,.,10 (2)

@, is patient i’s predicted well-being (initial status)
at the completion of surgery; f; is the rate of
increase in well-being (slope). These parameters
characterize each individual’s growth function over
and above the temporal disturbances accounted for
by the time-varying covariate w,.. 7, is the individu-
ally varying partial regression coefficient relating
stress to well-being for Individual i, and is the
residual. Thus, Level 1 describes the change within
individuals.

In the simplest Level 2 model, we assume that
the set of os and the set of ;s are normally distrib-
uted. The means and variances of these growth
parameters are estimated at Level 2. The means of
the growth parameters allow us to obtain a mean
trajectory for the whole group. To the extent that
the variances of the growth parameters are greater
than 0, there are differences between individuals in
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FIGURE 21.3. Growth trajectories for three individu-
als.

the growth patterns over time. With variation
across individuals, the two individual growth
parameters, ¢, and f3,, can become outcome vari-
ables to be regressed on time-invariant individual
background covariate variables. These background
variables can be experimental treatment conditions
(e.g., presurgical psychological intervention versus
no intervention) or stable individual difference vari-
ables (e.g., neuroticism). The Level 2 equations for
the intercepts and the slopes may be expressed as

a=a,+y,Z+06,

B, =B, + yﬁZ,_ +6ﬂi

3)

where @, is the grand intercept (mean intercept
across N individuals), B, is the grand slope (mean
slope across N individuals), and Z; is the time-

invariant covariate (e.g., neuroticism) and J,, and
d,, are the residuals associated with «; and f3,

respectively; and ¥, and y; are the regression coeffi-
cients. Besides the linear growth parameters, addi-
tional Level 2 equations may be written to account
for variation in the Level 1 regression coefficients
for the time-varying variables (e.g., daily stress) if
these are included in the model. Thus, at Level 2,
we model between individual differences in the val-
ues of the growth parameters (intercept and slope)
and the regression coefficients for the time-varying
variables.
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Although we have focused on linear growth,
more complex patterns including quadratic growth,
growth to an asymptote, and other nonlinear forms
of growth may be modeled as the number of meas-
urement waves increases (Cudeck, 1996; Singer &
Willett, 2002). In addition, different time-related
metrics may be of focal interest such as age or
elapsed time since an event (e.g., surgery) or the
beginning of a developmental period (see Biesanz et
al., 2003).

Standard growth curve models can also be esti-
mated using structural equation modeling (Muthén
& Khoo, 1998; Willett & Sayer, 1994). Mehta and
West (2000) noted that the two approaches can
both typically be used and produce the same
results, but that some applications may be more
amenable to one of the approaches. The hierarchical
modeling approach discussed in this section may be
more flexible in representing some nonlinear forms
of growth. In contrast, the structural equation mod-
eling approach often has more flexibility in model-
ing the measurement structure using multiple
indicators of a construct at each time point and in
modeling complex relationships between multiple
series. Within the structural equation approach, fea-
tures of autoregressive models (Curran & Bollen,
2001; McArdle, 2001) and features of latent
trait—state models (Tisak & Tisak, 2002) can
be combined with growth models.

The modeling of change using growth curve
modeling described earlier calls for several very
strong assumptions regarding the measurement
scale. First, the repeated measurements must be
made on at least an interval-level scale. Otherwise,
the form of growth will be confounded by changes
in the size of the measurement unit at each point in
the scale. Second, there must be measurement
invariance over time—the relationship between the
observed measures and the underlying construct
must remain constant with the passage of time. For
example, items such as pushing and biting might
measure physical aggression at age 4. However, at
age 16 these items will no longer adequately reflect
aggression, precluding meaningful study of change
over time. On the other hand, if we measure aggres-
sion at age 16 with items like “threaten with gun or
knife” and “hit with objects,” then the meaning of




the construct has changed. (See Patterson, 1995, on
developmental change in constructs.) In such cases
in which the items on instruments do change over
the course of the study (e.g., different items on a
measure of math ability in first and fourth grades),
there is a need to ensure that the meaning of the
construct remains the same. Educational
researchers have been successful to some extent in
the area of assessing skills and knowledge using
vertical equating of overlapping test forms of
increasing difficulty levels (see section on vertical
equating). Similar techniques are not as well devel-
oped for longitudinal studies of psychological and
affective constructs.

Other Longitudinal Models
Our emphasis has been on several of the more com-
mon new longitudinal models for stability and
change using continuous latent variables. New
models for other forms of data have also been
developed. Space considerations did not permit us
to consider longitudinal modeling of discrete latent
classes (Langeheine, 1994; Lanza, Flaherty, &
_Collins, 2003), combinations of continuous and
discrete latent variables (Muthén, in press), longitu-
dinal models for single subjects (Browne & Zhang,
in press; West & Hepworth, 1991), or the linear
logistic model with relaxed assumptions for meas-
uring change (Fischer & Formann, 1982).

MEASUREMENT OF CHANGE

For researchers who are interested in quantitative
change over time rather than (rank order) stability,
the measurements need to be made on a common
scale that achieves at least an interval level of meas-
urement over time. This property characterizes
many physical measurements such as height, blood
pressure, or counts of behaviors. However, this
property often does not characterize psychological
measures of attitudes and traits. Attempts to meas-
ure abilities, attitudes, or traits usually rely on the
collective strength of responses to individual items
within instruments. In the measurement of psycho-
logical traits, the response to each item is typically
assessed by either using a dichotomous response
(e.g., “I enjoy parties”—true or false) or a Likert-
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type response scale that is essentially ordinal (e.g.,
“How much do you like parties?” rated on a 5-point
scale from “not at all” to “very much”). In current
research practice the same instrument is adminis-
tered at each measurement wave, and the total scale
score at each wave is used to model change. How-
ever, this practice involves several important
untested assumptions: (a) the scale is unidimen-
sional, (b) the total scores yields interval level
measurements, (¢) the same total score would indi-
cate the same construct level over time, and (d)
there is measurement invariance over time. These
assumptions are seldom checked or addressed.

If the measurements are not made on an interval
scale, equal differences in scores over time at differ-
ent levels of the construct may not mean the same
amount of change in the construct. The measure-
ment unit stretches or shrinks as a function of the
level that is measured—the rubber ruler problem.
Desirable interval scale properties can usually be
achieved through careful scale construction and
through successfully applying measurement models.

External Scale Construction: Rasch and
Item Response Theory Modeling
Several methods exist for developing strong meas-
urement scales separately from the longitudinal
model of stability or change (see Rost & Walter,
chap. 18, this volume). These methods can be
applied to dichotomous or ordinal data. The scales
can be developed using the same or a different data
set from that used to test the longitudinal model.
The Rasch model (1-parameter; Rasch, 1960; Wright
& Masters, 1982; Wright & Stone, 1979) provides
interval-level measurement, and the 2-parameter
logistic Item Response Theory model (IRT; see
Embretson & Reise, 2000) provides a good approxi-
mation to interval-level measurement when the data
are consistent with the model. These are probabilis-
tic measurement models. For dichotomous items,
equal changes in the underlying latent construct cor-
respond to equal changes in the log of the odds of
endorsing an item, for any level of the latent trait.
For items with multiple ordered response cate-
gories (1 = “not at all,” 2, 3, 4, 5 = “very much)
that typify Likert-type scales, there are extensions
of both the Rasch and the 2-parameter IRT models.
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A variety of polytomous models for multiple-
ordered response categories have been developed.
The Rasch extensions include the partial credit
model (Masters, 1982) and the rating scale model
(Andrich, 1978). The 2-parameter IRT extensions
include the graded response model (Samejima,
1969) and the modified graded response model
(Muraki, 1990). The basics of the Rasch model and
its extensions are described and illustrated by Rost
and Walter (chap. 18, this volume). Drasgow and
Chuah (chap. 7, this volume) explain and illustrate
the 2- and 3-parameter models in detail. In each of
these models, there are multiple probability curves
for each item, one for each response category. These
probabilities provide information on how each cate-
gory functions relative to other categories within an
item. These models produce good approximations
of interval level score estimates of the underlying
construct while treating the response categories as
ordinal. The interval level score estimates produced
can be used to model longitudinal change.

Simultaneous Longitudinal and
Measurement Modeling

Structural equation modeling permits simultaneous
modeling of the measurement structure and the
longitudinal model of stability or change. In the
measurement portion of the model, each latent con-
struct is hypothesized to be error free and normally
distributed on an interval scale. The structural part
represents the relationships between the latent con-
structs. This modeling approach can also be
extended to two or more ordered categories
(Muthén, 1984). This approach assumes that each
dichotomous or ordered categorical measured vari-
able is characterized by an underlying normally dis-
tributed continuous variable. For each measured
variable, c-1 thresholds are estimated that separate
each of the c categories (e.g., one threshold for a
dichotomous variable). If the assumptions are met,
then Muthén’s approach will provide estimates of
the underlying factors that approximate an interval-
level scale of measurement. Indeed, Takane and de
Leeuw (1987) have shown that 2-parameter IRT
models and confirmatory factor models are identical
for dichotomous items under certain conditions.
Unfortunately, large sample sizes (e.g., 500-1,000
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or more cases) are often required for the appropri-
ate use of structural equation modeling approach to
categorical data. Newer estimation methods may
offer promise of adequate estimation with smaller
sample sizes (Muthén & Muthén, 2004). However,
separate scale development using external methods
such as Rasch or IRT modeling will often be more
efficient.

MEASUREMENT INVARIANCE ACROSS TIME

In cross-sectional research, a major concern is
addressing the issue of measurement invariance
across groups. Does a set of items measure cogni-
tive ability equally well in African-American and
Caucasian populations? Does a standard measure of
extroversion or depression capture the same under-
lying construct in the United States and China?
Similar issues can arise in longitudinal research
when measures are collected over extended periods
of time. Does a standard measure of childhood
extroversion assess the same construct at age 12
and age 18? If change over time is to be studied,
the same construct must be measured at each time
point. Measurement invariance may be established
within either (a) the Rasch/IRT or (b) the confir-
matory factor analysis approaches.

Measurement invariance implies that the score
on the instrument is independent of any variables
other than the person’s value on the theoretical con-
struct of interest. To illustrate how measurement
invariance might fail, consider a test of mathematics
ability for intermediate school students. Suppose
that the following item were devised: “A baseball
player has 333 at bats and 111 hits. What is his bat-
ting average?” Although this item clearly reflects
mathematical ability, it also reflects knowledge
about baseball—knowledge that is more likely to be
found in male than female students with the same
level of mathematics ability. Such items that exhibit
a systematic relationship with group characteristics
after controlling for the construct level are said to
be functioning differentially across groups. Differen-
tial item functioning (DIF) thus contributes to
measurement non-invariance across groups. Simi-
larly, if measurement invariance holds across time,
then the probability of a set of observed scores



occurring is conditional only on the level of the
latent construct and is independent of any variable
related to time:

P(Y|6,X))=P(Y|0),

where Y is the set of observed scores, 0 is the level
of latent construct and X, is the set of time-related
variables such as age and testing occasion. For
example, an item such as, “Did you make your bed
this morning?” might be a good measure of the
orderliness facet of conscientiousness for college
students at the beginning of the semester, but not
during exam weeks. Only when measurement
invariance over time is established can we conclude
that the measurement scale for the underlying con-
struct remains the same. Of importance, measure-
ment invariance allows us to conclude that changes
in scores are the result of changes over time on the
construct of interest rather than on other character-
istics of the instrument or the participants.

Rasch and IRT Approaches

For unidimensional constructs with dichotomous or
ordered categorical items, the Rasch model and the
2-parameter logistic IRT model are commonly

used (see Embretson & Reise, 2000). The Rasch
model has one parameter (b,) for each item repre-
senting its difficulty (level), whereas the two-param-
eter IRT model has both a difficulty parameter (b)
and a discrimination (slope) parameter (aj) for each
Jitem. Assessment of measurement invariance across
time involves checking that the item parameters g,
and b, have not changed over time. If the data fit the
Rasch model, a; = 1 for each item so only the set of
b;s will be checked. For measures with multiple
ordered categories, the item parameters correspon-
ding to each possible response category will need to
be checked for each item. These procedures work
very well for unidimensional scales that are often
developed for the assessment of abilities. Unfortu-
nately, current measures of many psychological con-
structs (e.g., many attitudes; traits) are very often
multidimensional, consisting of several underlying
factors or a major factor and several minor factors.
The use of Rasch and IRT procedures for the assess-
ment of measurement invariance is not as well stud-
ied for multidimensional psychological scales.
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Confirmatory Factor Analysis Approaches
When data are continuous and there are one or
more underlying factors, confirmatory factor analy-
sis procedures may be used to test measurement
invariance. Meredith (1993) considered the issue of
measurement invariance across groups, and he
developed a sequence of model comparisons that
provide a close parallel to the IRT approach.
Widaman and Reise (1997) presented a clear
description of these procedures, and Meredith and
Horn (2001) have recently extended this approach
to testing measurement invariance over time. In
brief, a hierarchical set of models with increasingly
strict constraints are compared. First, a baseline
model is estimated. In this model, the value of the
factor loadings of each measured variable on an
underlying construct may differ over time. For
example, consider the model of conscientiousness
(Figure 21.1) discussed in the prior section on
“examining stability: autoregressive models.” Sup-
pose we had allowed the factor loadings to vary over
time (Model 1) and this model fit the data. Such a
model, known as a configural model, would suggest
that similar constructs were measured at each meas-
urement wave. In contrast, imagine that although
the single factor of conscientiousness fit the data
adequately at Wave 1, over the course of a longer-
term study the conscientiousness factor split into
two separate factors—one factor representing order-
liness and reliability and a second factor represent-
ing decisiveness and industriousness. Such a result
would indicate the fundamental nature of the con-
scientiousness factor had changed over time (failure
of configural invariance), making difficult any inter-
pretation of stability or change in conscientiousness.
When the configural model fits the data (as in our
earlier example), we can investigate questions related
to the rank-order stability of the general construct.
Note, however, that the conscientiousness latent con-
struct (factor) at each measurement wave would not
necessarily be characterized by a scale with the same
units. To establish that the units are identical over
time, we need to show that the factor loadings are
equal across time. As we saw in the model represented
in Figure 21.1, the imposition of equal factor loadings
did not significantly affect the fit of the model in our
example. Thus, our study of stability was improved by
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our ability to correlate constructs measured using the
same units at each measurement wave.

Finally, suppose that we wish to establish that
the scale of the construct has both the same units
and the same origin over time (i.e., interval level of
measurement). Recall that this condition must be
met for proper growth modeling. To illustrate differ-
ences in the origin, consider that the Celsius and
Kelvin temperature scales have identical units (1
degree difference is identical on both scales). How-
ever, the origin (0 degrees) of the Celsius scale is the
freezing point of water, whereas the origin of the
Kelvin scale is absolute 0 (where molecular motion
stops). To establish that the origins are identical, we
need to consider the level of each measured variable
(mean structure) in addition to the covariance struc-
ture. If the origin of the scale does not change over
- time, then the intercept (the predicted value on each
measured variable when the level of the underlying
construct 8 = 0) also must not change over time. If
the fit of a model in which the intercepts for each
measured variable are allowed to vary over time
does not significantly differ from that of a more
restricted model in which the each variable’s inter-
cept is constrained to be equal over time, this condi-
tion is established.? If this condition can be met,
then the level of measurement invariance over time
necessary for proper growth curve modeling has
been established. Widaman and Reise (1997) dis-
cussed still more restrictive forms of measurement
invariance that can be useful in some specialized
applications. Muthén (1996), Mehta et al. (2004),
and Millsap and Tein (in press) present extensions
of the confirmatory factor analysis approach that can
be used to establish measurement invariance for
multidimensional constructs measured by dichoto-
mous or ordered categorical measures.

VERTICAL EQUATING: ADDRESSING AGE-
RELATED CHANGES IN ITEM CONTENT

The items required to measure a latent construct
can change as participants age. In educational

research children are expected to acquire knowl-
edge and learn appropriate skills. For example, in a
test of mathematical proficiency, items related to
multiplication may be needed in third grade,
whereas items related to fractions may be needed in
sixth grade. The test forms for each grade level
must be equated onto a single common metric to
measure educational progress. Vertical equating
must be achieved externally prior to any longitudi-
nal modeling of the data.

Vertical equating uses Rasch models or the 2-
parameter IRT models to calibrate tests onto a single
common “long” interval scale. This “long” scale cov-
ers the full range of proficiency as assessed using
easier tests in the lower grade levels and more diffi-
cult tests in the higher grade levels. The equating of
test forms is made possible by embedding common
item sets in the test forms. The common item sets
serve as “anchor” or “link” items for the equating.
Any change in the probability of getting each item
correct should only occur if there is a change in the
individuals level on the underlying construct; other-
wise, the item is showing DIF as a function of grade
level. For example, an item that is assessing prob-
lem-solving skills at Grade 2 but is just assessing
routine skills at Grade 4 may very likely show DIE
Even though the wording of the item is identical,
this item functions differently across the two differ-
ent grades and will not make a good link item.
Thus, for unidimensional constructs vertical equat-
ing combines testing for DIF and establishing meas-
urement invariance of link items and linking scales
(see Embretson & Reise, 2000). Applications of
these equating procedures permit the development
of computerized adaptive tests (see Drasgow &
Chuah, chap. 7, this volume) that select the set of
items that most precisely assess each participant’s
level on the underlying latent construct 8. Unfortu-
nately, vertical equating of multidimensional con-
structs is difficult to achieve because the rate or
form of growth may vary across dimensions so that
common item set(s) that adequately represent each
of the dimensions cannot always be constructed.

3The full confirmatory factor analysis model including mean structure can be expressed as Y =v+ An+¢£. Y is the p x 1 vector of observed scores,
v is p x 1 vector of intercepts, 7] is the m x 1 vector of latent variables, A is the p x m matrix of the loadings of the observed scores on the latent
variables 77, and € is the p x 1 vector of residuals. For modeling longitudinal measurement, a model in which both A and v are constrained to be

equal over time must fit the data.
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In contrast to research on measures of educa-
tional progress and abilities, far less attention has
been given to equating psychological constructs like
traits and attitudes across age. Typically, the same
instrument is used at each measurement wave to
assess individuals on a construct of interest. This
practice is often appropriate when the time span-
ning the study is relatively short and the study does
not cross different periods of development. If the
reading level and the response format are appropri-
ate for the participants over the duration of the
study, serious age-related problems with the instru-
ment are unlikely to occur. However, when a meas-
ure crosses developmental periods, for example, in
a study that follows subjects from adolescence to
young adulthood, the instrument may not capture
the same construct adequately as subjects mature.
Some items may need to be phased out over time
while other items are being phased in. What results
are instruments that are not identical, but that have
overlapping items for different developmental peri-
ods. For example, the Achenbach Youth Self-Report
externalizing scale (YSRE) was developed for youth
up to age 18 (Achenbach & Edelbrock, 1987), and
the Young Adult Self-Report externalizing scale
(YASRE) was developed for young adults over age
18. Each measure has approximately 30 items, yet
only 19 of these items are in common across the
two forms. If participants were administered the
two forms of the YSRE during a longitudinal study
. that crossed these developmental periods, the two
forms would need to be equated onto a common
scale if growth is to be studied. Such vertical equat-
ing of psychological measures is rare.

Many of the standard measures used in psychol-
ogy were designed for cross-sectional studies to
examine differences between individuals; they were
not developed for the study of change within an
individual across time. As an illustration, many tra-
ditional instruments used for research in develop-
mental psychological are normed for the different
ages. Norm-referenced metrics do not comprise an
interval scale and are often not suitable for captur-
ing change. One example of a norm-referenced met-
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ric is the grade-equivalent scale (e.g., reading at a
fifth-grade level) used in measuring reading
achievement. Seltzer, Frank, and Bryk (1994) com-
pared growth models of reading achievement using
the grade equivalent metric and using interval-level
scores based on Rasch calibration. They found that
the results were very sensitive to the metrics used.
Theoretically, structural equation modeling
approaches could also be used for vertical equating.
However, McArdle, Grimm, Hamagami, and Ferrer-
Caja (2002) noted that such efforts to date with
continuous measures have typically involved
untestable assumptions and have often led to esti-
mation difficulties. At the same time, studies to date
have not carefully established common pools of
items (or subscales) that could be used to link the
different forms of the instrument. Mehta et al.
(2004) addressed vertical equating of ordinal items.

CONCLUSION

Researchers have increasingly recognized the value
of longitudinal designs for the study of stability and
change, for understanding developmental processes,
and for establishing the direction of hypothesized
causal effects. Researchers have increasingly gone
beyond the minimal two-wave longitudinal design
and now often include several measurement waves.
These multiwave designs potentially permit the
researcher to move beyond traditional analyses such
as correlation, regression, and analysis of variance
and use promising newer analysis approaches such
as the autoregressive, latent state-trait models, and
growth curve models presented in this chapter.
These analyses can potentially provide better
answers to traditional questions in longitudinal
research. They also permit researchers to raise inter-
esting new questions that were rarely, if ever, con-
sidered within the traditional analytic frameworks.
For example, latent trait-state models can provide
definitive information about the role of states and
traits, a classic problem in personality measure-
ment. Growth curve models permit researchers to
identify variables that explain individual differences

*Ferrer and McArdle (2003) and McArdle and Nesselroade (2003) provide a review of these and several other recently developed longitudinal mod-

els that could not be included in this chapter because of space limitations.
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in growth trajectories, a question that was not
raised until the development of these models.
Longitudinal researchers, like researchers in
many other areas of psychology (see Aiken, West,
Sechrest, & Reno, 1990) have often paid minimal
attention to measurement issues. And historically,
such lack of attention could be justified because the
traditional measurement practices were “good
enough” to provide adequate tests of the hypothe-
ses. Answering questions within a traditional null
hypothesis testing framework about the simple
existence of a difference between means or of a cor-
relation does not require sophisticated measure-
ment. Ordinal level measurement provides
sufficient information. And statistical methods like
ANOVA and regression that were designed for
interval-level scales have proven to be relatively
robust even when applied to ordinal scales. So long
as the assumptions of the procedure (residuals are
independent, normally distributed, and have con-
stant variance) are met, the traditional measures
produce reasonable answers (Cliff, 1993). And
researchers could compensate for the loss of statisti-
cal power associated with the use of ordinal meas-
urement by moderate increases in sample size.
However, psychologists have begun to ask more
complex questions about the size and the form of
relationships. What is the magnitude of the effect of
treatment? How much do boys versus girls gain in
proficiency in mathematics achievement from
Grade 1 to 3? Does the acquisition of vocabulary in
children between 12 and 24 months show a linear
or exponential increase? Proper answers to such
questions require more sophisticated measurement.
There is an intimate relationship between theory,
methodological design, statistical analysis, and
measurement. Many traditional questions about the
stability of constructs and the relationship of one
construct to another over time can be adequately
answered even without achieving interval-level
measurement. Some added benefits do come from
interval-level measurement: More powerful statisti-
cal tests and a more definitive interpretation of
exactly what construct is or is not stable (and to
what degree) can be achieved. But, in contrast, as
psychologists ask increasingly more sophisticated
theoretical questions about change over time and
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use more complex statistical analyses that are capa-
ble of providing answers to these questions, inter-
val-level measurement will be required. The
exemplary initial demonstrations of the newer sta-
tistical models for modeling change have deliber-
ately used interval-level measures. To cite two
examples, Cudeck (1996) reported nonlinear mod-
els of growth in physical measures (e.g., height)
and number of correct responses in learning. McAr-
dle and Nesselroade (2003) emphasized growth
models using a Rasch-scaled cognitive measure (the
Woodcock-Johnson measure of intelligence). As
these newer statistical models of growth are applied
to current measures of psychological characteristics
(e.g., attitudes, traits), the limitations of many cur-
rent measures will become more apparent. For
example, how can researchers distinguish between
linear growth and growth to an asymptote if they
cannot be confident that measurements have been
made on an interval scale? Evidence of measure-
ment quality traditionally cited in reports of instru-
ment development—adequate coefficient alpha,
test—retest correlation, and correlations with exter-
nal criteria—will not be sufficient for longitudinal
researchers who wish to model growth using the
newer statistical models that demand interval-level
measurement.

In this chapter we have emphasized four features
of longitudinal measurement for psychological char-
acteristics. These features can be viewed as desider-
ata that can help ensure that the measurement of
constructs over time is adequate for the study of
growth and change. These desiderata can be
achieved using Rasch or IRT approaches for dichoto-
mous or ordered categorical items and confirmatory
factor analysis procedures for continuous items.

1. Scales developed to measure the construct of
interest should ideally be unidimensional. In
cross-sectional studies, the use of scales with
more than one underlying dimension has led to
considerable complexity in the interpretation of
the results of studies using these scales. Although
multidimensional scales may be used in longitu-
dinal studies, interpretation will be challenging
because each of the underlying dimensions may
change at different rates over time.



2. Scales should attempt to achieve an interval level
of measurement. The same numerical difference
at different points on the scale should indicate
the same amount of change in the underlying
construct.

3. Measurement invariance over time should be
established to ensure that the construct has a
stable meaning. Each of the items on the instru-
ment should measure the same construct at each
measurement wave. The goal is to produce
measures that assess only change on the con-
struct and not differential functioning of items as
their meaning changes over time.

4. Measures should use items and response formats
that are appropriate for the age or grade level of
the participants. The different forms of the meas-
ure must be linked and equated onto a single
common scale. This practice is commonly used
in educational research where procedures for
vertical equating of measures containing both
different and overlapping items have been well
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developed. For psychological measures, this
issue of externally developing age-appropriate
measures will often arise in longer duration stud-
ies that cross different developmental periods.

Achieving these desiderata will provide a differ-
ent degree of challenge for different areas of longi-
tudinal research in psychology. Some existing areas
such as the study of physical growth and the
growth of cognitive abilities have long used meas-
ures that meet these desiderata. Emerging areas will
need to ensure that they address these issues as
they develop new measurement scales. And in
many other existing areas researchers will need to
rescale existing instruments to develop measures
that more adequately meet these desiderata. But, in
each case, there will be a clear payoff. Researchers
will have a substantially enhanced ability to ask and
properly answer interesting new questions about
change in important psychological constructs.

317





